首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
以Nd9.5Fe76Zr3Co5B6.5合金为研究对象,研究了不同快淬速度(8~65 m/s)对合金的磁性能、交换耦合作用和微观结构的影响。结果表明,快淬速度对合金退火后的微观结构和磁性能具有显著地影响,适当的快淬速度将使合金退火后的晶粒细化、分布均匀,提高软、硬磁性相间的交换耦合作用,进而提高合金的磁性能。当淬速为15 m/s时,合金退火后具有最佳的综合磁性能:Br=0.976 T,Hcj=711.57 kA/m,(BH)max=150.61 kJ/m3。  相似文献   

2.
纳米双相Nd2Fe14B/α-Fe磁体的微结构和交换耦合作用   总被引:2,自引:1,他引:2  
用熔体快淬法制备了高性能纳米双相耦合Nd2 Fe14 B/α Fe磁体 ,研究了快淬速率对其微结构和交换耦合作用的影响。实验结果表明 ,控制快淬速率在 12m/s时 ,可直接得到显微组织均匀 ,α Fe相粒子细小且均匀分布的纳米双相耦合Nd2 Fe14 B/α Fe磁体。低温退火消除由快速凝固带来的成分不均匀性后 ,强烈的铁磁交换耦合作用导致其最高磁性能为 :iHc=432 .2kA/m ,Jr=1.0 8T ,(BH) max=115kJ/m3 。快淬速率提高 ,非晶相体积分数增加 ,在高温晶化热处理时软硬磁相析出不均匀 ,个别α Fe相粒子奇异长大 ,尺寸达到 10 0nm左右 ,这不利于软硬磁相间的交换耦合作用 ,有损磁性能。  相似文献   

3.
综述了具有磁交换耦合作用的新型Sm-Co复合永磁体的研究进展.说明了硬磁相与软磁相间的磁交换耦合作用机理,以及交换耦合作用对复合永磁材料磁性能的影响.通过列举典型的Sm-Co永磁体及其磁性能,讨论了合金成分、添加元素和制备工艺对磁性材料显微结构和磁性能的影响,并且重点介绍了快淬速度对磁性能的影响.  相似文献   

4.
采用熔体快淬法制备成分为Nd10Fe80-xNbxB10(x=0~6)的非晶条带,退火处理后得到纳米晶复合永磁合金。利用振动样品磁强计(VSM)分析该合金系的磁性能和软、硬磁性相间的交换耦合作用。结果表明,适量的Nb元素的添加可以使软、硬磁性相的晶粒细化,从而有效地增强合金中软、硬磁性相间的交换耦合作用,进而提高合金的综合磁性能。当Nb含量为4at%时,制得的合金条带具有最佳的综合磁性能:Hcj=936.02kA/m,Br=0.91T,(BH)max=125.86kJ/m3。  相似文献   

5.
研究了快淬速度对熔体快淬法制备Nd10Fe81Co3B6薄带微结构及磁性能的影响。结果表明,随着快淬速度的增加,薄带中非晶相含量增加。快淬薄带在800 ℃晶化处理10 min后,15 m/s淬速的薄带基本由粒径大于50 nm的Nd2(Fe,Co)14B与粒径小于25 nm的Fe7Co3相组成,两相交换耦合作用较弱,而50 m/s淬速的薄带中仍含有大量的非晶相,使得薄带的剩磁减小,但矫顽力没有明显降低;35 m/s淬速的薄带退火后晶化完好,两相交换耦合作用最好,矫顽力达到249 928 A/m,剩磁达到84.3 A·m2/kg。不同快淬速度薄带中主相Nd2(Fe,Co)14B的居里温度基本相同,约为630 K。  相似文献   

6.
采用快淬法制备了镨基(Nd,Pr)10.5-x Dyx Fe83.5B6(x=0.0,0.5,1.0,1.5,2.0,2.5)系列粘结磁体,研究了Dy元素添加对快淬合金显微组织结构、磁性能及快淬薄带热稳定性的影响。与Nd2Fe14B相比,硬磁相Dy2Fe14B具有较高的磁晶各向异性场HA和较低的饱和磁极化强度Js,因此,Dy元素添加能显著提高合金的内禀矫顽力Hcj,但会降低合金的剩磁Br。Dy元素替代Nd/Pr元素,增强了快淬薄带的热稳定性,提高了晶化退火温度。较高的晶化退火温度,使快淬薄带中已经形成的微晶更容易长大,形成一些粗大晶粒,降低了粘结磁体的磁性能。1.0%是较佳的Dy元素添加量,(Nd,Pr)9.5Dy1Fe83.5B6合金快淬粘结磁体的最大磁能积(BH)max为71.6 k J/m3,剩磁Br为0.638 T,内禀矫顽力Hcj为611 k A/m。  相似文献   

7.
采用快淬法制备了镨基(Nd,Pr)10.5-x Dyx Fe83.5B6(x=0.0,0.5,1.0,1.5,2.0,2.5)系列粘结磁体,研究了Dy元素添加对快淬合金显微组织结构、磁性能及快淬薄带热稳定性的影响。与Nd2Fe14B相比,硬磁相Dy2Fe14B具有较高的磁晶各向异性场HA和较低的饱和磁极化强度Js,因此,Dy元素添加能显著提高合金的内禀矫顽力Hcj,但会降低合金的剩磁Br。Dy元素替代Nd/Pr元素,增强了快淬薄带的热稳定性,提高了晶化退火温度。较高的晶化退火温度,使快淬薄带中已经形成的微晶更容易长大,形成一些粗大晶粒,降低了粘结磁体的磁性能。1.0%是较佳的Dy元素添加量,(Nd,Pr)9.5Dy1Fe83.5B6合金快淬粘结磁体的最大磁能积(BH)max为71.6 k J/m3,剩磁Br为0.638 T,内禀矫顽力Hcj为611 k A/m。  相似文献   

8.
利用单辊快淬法制备Nd9.5Fe81Zr3B6.5合金条带,采用X射线衍射、差式扫描热分析、透射电子显微分析和振动磁强计等分析测试手段,对合金条带的物相演变和磁性能进行研究。结果表明:在不同快淬速度的条件下,合金条带的微观组织结构不同;在热处理过程中,合金的晶化过程分两步完成:α-Fe 首先析出,Nd2Fe14B 随后析出。随着快淬速度的增大,最佳热处理后合金的晶粒变粗,这使得软磁相和硬磁相之间的交换耦合作用减弱,进而导致合金磁性能的降低。  相似文献   

9.
采用熔体快淬及晶化退火工艺制备了纳米双相(Nd,Pr)2Fe14B/α-Fe型磁体,研究了Nb和Zr的添加对磁体磁性能、微观结构和晶化行为的影响。结果表明:添加Nb和Zr可提高α—Fe相的晶化温度,抑制α—Fe的析出和长大,避免亚稳相的形成,从而提高硬磁相的体积百分比。Nb和Zr复合添加能细化晶粒,增强硬磁相和软磁相问的交换耦合作用,显著提高纳米晶双相永磁合金的磁性能。合金(Nd,Pr)2Fe14B/α-Fe经过最佳热处理后,磁性能达到Br=1.10T,iHc=534.2kA/m,(BH)max=143.6kJ/m^3。  相似文献   

10.
在快冷形成的各向同性纳米晶NdFeB合金中已观察到超过理论极限值 (NdFeB为 0 8T)的高剩磁。韩国学者报道了在具有极低钕含量的快冷形成的Nd2 Fe80 B18合金中观察到的软磁相与硬磁相之间的交换耦合 ,也报道熔体快淬Nd10 Fe82 B8合金中软磁相与硬磁相交换耦合的证据及剩磁和矫顽力在 4 2K~ 30 0K之间的温度依赖关系。在氩气保护下用单辊技术制备了熔体快淬Nd2 Fe80 B18、Nd4 4Fe80 4B15 2 、Nd10 Fe82 B8和NdBFe11B10 合金。快淬带在 1 0 -4 乇真空下于 873K~ 1 0 73K退火 1 0min。用热磁法和X射线衍射对磁性相进行了分析…  相似文献   

11.
设计成分为Nd32.5B1.04Febal(质量分数,%),经过熔炼,制粉,成型,烧结后制备了烧结NdFeB磁体,对样品的铸锭,烧结态样品以及高温回火态样品,低温回火态样品的微观组织采用SEM进行了仔细地分析。结果显示,烧结NdFeB磁体的相具有"继承性",在熔炼中产生的α-Fe相会被烧结回火后的磁体继承下去,而烧结中形成的Nd2Fe14B相和B-rich相在回火后数量和形态基本上变化不大,Nd-rich相虽然数量变化也不大,但是在高温回火中熔化流动,均匀分布在主相Nd2Fe14B周围,把主相Nd2Fe14B一个个分隔开来,在低温回火中,这种流动会延续,相的形态会得到巩固,使得磁体最终获得良好的综合磁性能。  相似文献   

12.
1 INTRODUCTIONSincethediscoveryoftheuniaxialNd2 Fe14 Bcompoundin 1983[1,2 ] ,theNdFeBalloyshavebeenwidelyusedforpermanentmagnetapplicationsowingtotheirexcellentmagneticproperties ,suchashighcoercivity ,high energy products[3,4 ] .Intheserareearthpermanentmagnets ,afurtherexcitingrecentdevelopmentisthesuggestionofnano compositeex changemagnetscombiningthelargecoercivitiesinhardmagnetswithlargeinductionsfoundinsoftertransitionmetalmagnets[5,6 ] .Indeed ,thenano com positemagnetshavebeent…  相似文献   

13.
The coercivity mechanism of Nd-Fe-B based magnets prepared by a new technique of strip casting was investigated. Different from the traditional magnets, α-Fe phases are difficult to be found in Nd-Fe-B magnets prepared by strip casting. Meanwhile, the rich-Nd phases occur not only near the grain boundaries of main phases, but also within the main-phase grains. Investigation on the magnetizing field dependence of the eoercivity for the (Nd0.935Dy0.065)14.5Fe79.4B6.1magnet and the temperature dependence of the coercivity for the Nd14.5Fe79.4B6.1magnet have been done. Results show that coercivities for strip casting magnets are controlled by the nucleation mechanism.  相似文献   

14.
1.IntroductionThenewhard-magneticNdFeBall0yswithlowNdc0ncentration(35at.%)havebeenobtainedbycrystallization0fam0rphous.ibbo.sI1-3].Theirmagneticpr0pertiesatr0omtemperatureareasfollows:coercivityHc=16O-24OkA/m,remanenceB,=1'2-1.25T,andmagneticenergy(BH).ax=64108kJ/m'.ThevaluesofB.and(BH).axaremuchhigherthanth0se0fthewidelyusedanis0tropic(Ba,Sr)Fe12Ol9ferritesandAlNiC0alloys.Inpreyi0uspapers['-'1,wehavereportedthestructuralandmagneticpr0perties.Recentlywestudiedtheinfluenceofthesubstit…  相似文献   

15.
1 IntroductionNanocomposite two-phase magnets are an im-portant type of permanent magnetic materials that have attracted much attention in recent years. Com-bining the high coercive force of the hard magnetic phase and the large saturation magnetization o…  相似文献   

16.
Crystallization behavior of melt—spun NdFeB permanent magnets   总被引:3,自引:0,他引:3  
The crystallization behavior of melt-spun Nd8.5Fe78Co5Cu1Nb1B6.5 ribbons was investigated using dynamic differential scanning calorimetry(DSC)and X-ray diffractometry(XRD).It was found that the as-spun ribbons crystallize in two steps:at first the Nd3Fe62B14 α-Fe phases are formed and subsequently Nd3Fe62B4 transformed to Nd2Fe14B and α-Fe upon heating above 680℃.The effective activation energy of two crystallization peaks are 332.0kJ/mol and 470.5kJ/mol,respectively,As the wheel speed increases,the magnetic properties of the magnet change obviously,When the wheel speed is 18m/s,the best magnetic properties of the magnet was obtained after the sample was annealed at 690℃ for 8 min:Br=0.74T,iHc=421.7kA/m,(BH)max=64.5kJ/m^3.  相似文献   

17.
烧结NdFeB磁体热压变形后富Nd相的显微组织   总被引:1,自引:0,他引:1  
采用热压变形法对NdFeB磁体晶间富Nd相的显微组织进行了研究,实验结果表明,NdFeB磁体经真空热压变形后,富Nd相不再平均地分布在磁体晶间,而是聚集成团块状或从磁体边缘渗出,显微组织分析表明,富Nd相主要是由α-Dd和Nd2Fe17两相组成,与Nd-Fe合金的共晶组织成分接近,对于晶间添加Al元素的磁体,Al溶入晶间形成Nd2Fe15Al2相弥散地分布在晶界上,这有益于磁体矫顽力的提高;对于晶间添加Cu元素的磁体,晶间没有发现有新相产生。  相似文献   

18.
将机械球磨后制备的Nd2Fe14B非晶粉末和α-Fe纳米晶粉末分别采用2种方法制备纳米复相Nd2Fe14B/α-Fe永磁体。第1种方法是直接将其冷压制坯、真空包套和热挤压制备永磁体。第2种方法是先将Nd2Fe14B晶化,然后冷压制坯、真空包套和热挤压制备永磁体。利用TEM、VSM等分析手段对比研究了2种方法制备永磁体的相对密度、微观组织以及磁性能。结果表明:在相同的工艺参数下,第1种方法制备永磁体不仅可以减少工序,而且其制备的永磁体综合性能均优于第2种方法,其制备永磁体的相对密度为98.24%;Nd2Fe14B和α-Fe的晶粒尺寸分别为60和80nm;磁性能达到:Br=0.98T,Hci=305.6kA/m,和(BH)m=89.8kJ/m3。  相似文献   

19.
采用快淬法制备了Pr基(Nd,Pr)10.5Fe81.5-xTixCo2B6(x=0.0,1.0,2.0,3.0,4.0,5.0)系列粘结磁体,研究了添加Ti元素对快淬合金显微结构和磁性能的影响。Ti元素能有效细化合金的晶粒,添加3at%Ti的合金,晶粒细化到约70nm,且大小均匀;添加量超过3at%,晶粒进一步细化,但均匀性变差。含Ti3at%的(Nd,Pr)10.5Fe78.5Ti3Co2B6合金,粘结磁体磁性能达到最佳值,Br=0.655T,Hci=681kA/m,(BH)m=68kJ/m3。Ti元素低于3at%,合金晶粒粗大,磁性能较低;超过3at%后,富Ti的晶间相加厚,晶粒间的交换作用和剩磁增强效应减弱,且晶粒大小不均匀,合金的内禀矫顽力虽然增加,但剩磁Br和最大磁能积(BH)m降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号