首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
提出了一种连续探索型遗传算法.它不仅能提高简单遗传算法的收敛速度.而且能有效地保证种群的多样性,在全局范围内搜索解空间.得到最优解.将算法应用于多峰值函数的优化.仿真表明该算法的有效性和效率性.  相似文献   

2.
对于一些非线性、多模型、多目标的函数优化问题,用传统优化方法较难求解,而遗传算法却可以方便地得到较好的结果。本文分别用传统寻优算法和遗传算法对Rosenbrock函数作了测试比较,证明了遗传算法优于其他优化算法的全局寻优能力。对遗传算法寻优的标准偏差数据作小波分析,得到一些新颖的结果。  相似文献   

3.
针对一些工程技术中求最优值问题转化为遗传算法模型后,定义域难以限定或交叉、变异产生定义域外的不可行解的问题,提出了在选择复制操作前,增加筛选复制操作的方法.通过设置函数求导求解对照组,对改进的遗传算法的最优解进行验证,实验表明,增加筛选复制步骤后的遗传算法具有更好的适用性,且能有效解决不可行解干扰遗传准确性的问题.  相似文献   

4.
基于遗传算法的小波神经网络   总被引:4,自引:0,他引:4  
介绍小波神经网络的基本原理.利用遗传算法来优化小波神经网络,达到提高逼近精度,简化网络结构,提高收敛速度的目的.通过实验将其与传统的小波神经网络进行比较,证实前者具有更优的网络结构,更高的逼近精度.  相似文献   

5.
崔明义 《计算机工程》2010,36(2):192-193
在遗传算法诸多编码中,浮点数编码具有其他编码所不具备的优势。针对浮点数编码在遗传操作中所产生的噪声和其对算法性能的影响,考虑变异操作在遗传算法中的重要作用,提出基于小波消噪变异的浮点数编码遗传算法,从理论上证明小波对浮点数编码噪声的分解,用小波实现其消噪变异。实验结果表明,该方法理论上是可靠的,方法上是可行的。  相似文献   

6.
基于小波模糊网络的非线性函数逼近方法的研究   总被引:1,自引:0,他引:1  
针对非线性函数逼近问题,提出了一种新的融合策略——小波模糊网络;该网络将模糊模型引入小波网络,采用正交最小二乘法筛选小波,利用推广卡尔曼滤波算法调整网络非线性参数,避免陷入局部最优,提高学习速度,并采用最小二乘法修正权值,在不增加小波基函数的基础上提高网络的逼近精度;通过仿真,该网络的准确性和泛化能力都优于传统的小波神经网络,具有广泛的应用前景。  相似文献   

7.
针对传统网络收敛速度慢、隐层节点数选取盲目的问题,提出了一种基于递阶结构的自适应遗传算法.该遗传算法采取基于递阶结构的编码方式和自适应调整遗传算子,以网络的复杂性和准确性为目标函数,同时优化小波网络的结构和网络参数,并将优化网络用于飞控系统舵机的故障诊断,通过与传统的BP算法比较,结果表明基于递阶结构的自适应遗传算法的网络结构优化能力很强,且网络的收敛性能和诊断能力都有了很大的改进.  相似文献   

8.
隶属函数决定着模糊集的特征,建立小波基函数与隶属函数之间的联系,从而利用小波分析探讨模糊推理的实质,以一种非对称Haar小波基与三角型、梯型隶属函数的对应关系为基础,将小波分析、遗传算法与模糊系统结合,利用遗传算法实现小波隶属函数的训练学习,进而实现模糊推理规则的优化。  相似文献   

9.
编码问题是遗传算法研究的难点。浮点数编码在函数和约束优化中明显优于其他编码,并能提高算法的局部搜索能力。浮点数编码在遗传环境中产生的噪音和对算法性能的影响,正在被研究者所关注。但目前尚无基于多小波阈值实现浮点数编码消噪变异的研究成果出现。首先研究了多小波和浮点数编码噪音的性质,提出了一种基于多小波阈值的浮点数编码消噪变异方法,并与其他算法进行比较实验。研究和实验结果表明,这种方法可明显提高算法的收敛精度和速度,改善算法的整体性能。  相似文献   

10.
本文提出了一种基于遗传算法小波神经网络的变压器故障诊断方法。首先构造了基于Mexicohat小波的小波神经网络,其次利用遗传算法优化小波网络的参数,并将其应用到基于溶解气体分析的变压器故障诊断中,最后通过实例证明了本方法的有效性和可行性。  相似文献   

11.
该文利用单层有限神经元的遗传算法和小波神经网络相结合,以小波网络的速度得到提高;同时注意到K-L的降维、压缩等先进性,遗传算法的鲁棒性,进而将遗传算法、小波神经网络、图像特征提取三者有机结合,促使实时系统能够更快速提取图像特征,同时对图像进行小波压缩和K-L压缩,使压缩率更高。  相似文献   

12.
提出将小波神经网络和遗传算法相结合,用于电力系统短期负荷预测的新方法。具体是充分利用遗传算法的优越性,对小波神经网络的权值进行优化,然后利用优化得到的权值,对原始数据进行W N N训练。通过仿真,该种方法比传统利用神经网络进行负荷预测具有更高的精度。  相似文献   

13.
为提高小波网络运行速度,缩短小波网络的训练及运行时间,提出一种基于提升小波变换和神经网络算法的改进小波网络——提升小波网络.首先将带有明显特征的信号作为网络输入,经过权值处理输入到隐层节点进行提升小波变换处理,提取信号的低频系数作为隐层节点的输出,再经过权值化处理输入到输出层节点进行0-1输出,进而达到对信号的特征识别...  相似文献   

14.
遗传小波神经网络实现人脸和语音的认证系统   总被引:5,自引:0,他引:5  
论文意在设计一个使用人的面部特征和语音的生物特征作为登录口令的认证系统。系统先对语音和图像进行预处理,从中提出特征并进行有效的融合而得到复合的生物特征,再通过基于遗传算法的小波神经网络实现身份特征的学习和识别,实践结果证明本设计是可行的。  相似文献   

15.
基于小波理论的神经网络模型构造   总被引:9,自引:0,他引:9  
小波神经网络是由小波分析理论与神经网络理论结合而成的一种神经网络 ,一般来说 ,小波分析与神经网络的结合有两种不同的方式 ,即辅助式结合 (松散式结合 )方式和嵌套式结合 (紧致式结合 )方式。分别对这两种结合方式作了详细描述 ,并且给出了不同结合方式下的各种小波神经网络模型以及相应的学习算法。  相似文献   

16.
为了准确可靠地发现和预测陀螺仪的故障,提出了一种基于RBF小波神经网络的陀螺仪故障检测方法;该方法是将陀螺仪的输出信号进行三层小波包分解,再对分解得到的8个不同频段上的节点进行特征提取,将提取后的8维特征向量作为RBF神经网络的输入;当陀螺仪发生故障时,陀螺仪的输出信号中会产生突变成分,进行训练后的RBF神经网络可以准确地诊断出陀螺仪的故障类型;应用Matlab实现了RBF小波神经网络诊断陀螺仪故障类型的仿真;仿真结果表明,应用RBF小波神经网络进行陀螺仪故障诊断有很好的效果。  相似文献   

17.
刘坤 《计算机仿真》2005,22(9):136-139
神经网络能够以任意精度逼近任意复杂的非线性关系,具有高度的自适应和自组织性,在解决高度非线性和严重不确定系统的控制方面具有巨大的潜力.但一般神经网络训练算法如BP算法训练速度慢,受初值影响大且易陷入局部极小点,该文提出了一种基于模糊神经网络的间接自校正控制系统,控制器以高斯隶属度函数的径向基函数(RBF)神经网络结构,利用改进的遗传算法(GA)对结构和参数进行同步优化,改进适应度函数指导搜索过程,在保证稳定情况下大大加快了收敛的速度.神经网络正向模型(NNP)利用弹性BP算法进行离线辨识,使得到的模型泛化性能好.  相似文献   

18.
利用卡尔曼滤波器进行状态估计时,要求系统具有已知的数学模型和噪声统计特性等先验知识,而实际系统往往不能满足这一要求;针对这种情况,提出了一种小波神经网络滤波器设计的方法,它结合了神经网络的函数逼进能力和小波变换的良好局部特性及多分辨率特性,使网络能根据数据的分布情况以不同的分辨率进行学习,从而使网络具有更灵活有效的函数逼近能力,提高了估计精度;仿真结果表明,用该滤波器对系统状态进行估计,其精度高于卡尔曼滤波器的估计精度.  相似文献   

19.
基于改进遗传算法的神经网络模型辨识   总被引:4,自引:0,他引:4  
利用前向神经网络对非线性动态系统建模时存在着很大的缺陷,因此提出采用递归网络(RNN)对非线性动态系统建模。并在权值的修正上,摆脱常用BP算法的束缚,采用改进的遗传算法搜索最优权值。最后对一高阶非线性系统进行建模仿真实验,结果表明该方法是有效的。  相似文献   

20.
提出了一种基于小波神经网络整定的PID控制方法。由于小波变换具有良好的时频局部特性,神经网络具有强大的非线性映射能力,自学习、自适应等优势,采用规范正交的小波函数作为神经网络的基函数构成小波神经网络。该网络兼有小波函数的紧支性、波动性以及神经网络的非线性映射能力,自学习、自适应能力等优点,渗碳炉控制实验结果表明.用该方法整定的PID控制系统收敛速度快。逼近精度高,鲁棒性好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号