首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Powder Metallurgy and Metal Ceramics - The efficiency and durability of a diamond tool fabricated using powder metallurgy methods depend on several factors. These are the quality of diamond...  相似文献   

2.
Powder Metallurgy and Metal Ceramics - In the framework of the CALPHAD method, a thermodynamic database was developed for calculating the thermodynamic properties of liquid alloys in the...  相似文献   

3.
For the first time, we report here that the development of the novel Ti?CCu?CFe?CCo?CNi high entropy alloys (HEAs) via vacuum arc melting technique using non consumable tungsten electrode under high purity Ar atmosphere on a water-cooled copper hearth. Ti?CCu?CFe?CCo?CNi multicomponent alloys with varying Ti/Cu (x) molar ratio (x?=?1/3, 3/7, 3/5, 9/11, 1, 11/9 and 3/2) have been prepared through the tailoring of microstructure to get understanding of the phase formation and the microstructural evolution of these multicomponent HEAs. X-ray diffraction and scanning electron microscopy coupled with energy dispersive spectroscopic results confirm the presence of (Cu)ss, (Co)ss and (??-Ti)ss dendrites with ultrafine eutectic between cubic (Cu)ss and Laves phase (Ti2Co type). The solidification pathways of novel alloys are critically discussed as follows. For x?=?9/11, 1, 11/9 and 3/2; firstly, (??-Ti)ss dendrite is formed from the liquid, followed by the liquid phase separation between the cobalt-rich solid solution (Co)ss and copper-rich solid solution (Cu)ss and finally, the remaining liquid undergoes eutectic reaction between copper solid solution (Cu)ss and the Laves phase (Ti2Co Type), whereas for x?=?1/3, 3/7 and 3/5; (??-Ti)ss dendrite is formed first from the liquid and then remaining liquid undergoes the liquid phase separation resulting two different dendrites of (Cu)ss and (Co)ss phases. Detailed thermodynamic calculations have been carried to rationalize the formation of stable solid solution phases of these newly developed multicomponent Ti?CCu?CFe?CCo?CNi HEAs.  相似文献   

4.
5.
Sun  W.Z.  Huang  Z.K.  Lu  Y.J.  Liu  L.M.  Xiao  Z. 《Powder Metallurgy and Metal Ceramics》2022,60(11-12):738-747
Powder Metallurgy and Metal Ceramics - Preliminary experiments revealed solid-state reactions in the SiC–TiO2–MgO system that resulted in forming TiC compound, providing, thus, a new...  相似文献   

6.
对Fe–Ni–Cu–C–Mo粉末锻造材料的锻后热处理工艺进行了研究,通过动态连续冷却转变试验绘制出该材料的连续冷却转变(continuous cooling transformation,CCT)曲线,指导材料锻后冷却工艺的选取。对Fe–Ni–Cu–C–Mo淬火试样进行不同温度的低温回火试验,探究不同回火温度对该材料微观组织与力学性能的影响。结果表明,当锻后冷却速率大于7.0 ℃·s?1时,Fe–Ni–Cu–C–Mo粉锻材料组织全为马氏体,硬度趋于稳定;在150 ℃和175 ℃回火,碳化物均匀地分布在马氏体板条内部,起到析出强化的作用,材料表现出优异的抗拉性能。  相似文献   

7.
Sintered (Pr1–xy Dy x Gd y )13–14(Fe1–z Co z )balB6–7 materials (x = 0.18–0.58, y = 0.05–0.33, z = 0.2–0.36) have been studied. The magnetic moments of gadolinium ions and those of the sublattice formed by Fe and Co ions are shown to be ordered antiferromagnetically. It is noted that an increase in the content of gadolinium, which substitutes for dysprosium, leads to an increase in residual induction B r , a decrease in coercive force H cJ , and an increase in the absolute value of the temperature coefficient of induction. The opposite effect takes place in the case of substitution of gadolinium for praseodymium in materials with a fixed dysprosium content.  相似文献   

8.
The effect of the chromium concentration on the magnetic properties of Fe–Cr precursors for hard-magnetic Fe–Cr–Co materials is studied. Nitrogen used as a sintering atmosphere and a long annealing time enhance are found to increase the coercive force Hc of the materials. The phase formation in Fe–30% Cr alloys is traced during heat treatment in nitrogen and argon atmosphere using thermal analysis.  相似文献   

9.
Russian Journal of Non-Ferrous Metals - Technological regimes for producing wrought products (2 and 1 mm) from the Al–4.5%Zn–2.5%Mg–2.5%Ca–0.5%Fe–0.2%Zr–0.1%Sc...  相似文献   

10.
The present study investigates the effect of compaction pressure and sintering temperature on densification response and mechanical properties of the Al–3.8Cu–1Mg–0.8Si–0.3Sn (2712) alloy. The compacts were pressed at 200 and 400 MPa and sintered at temperatures ranging from 570–630°C in vacuum (10?6 Torr). The objective of the present work is to obtain an optimum sintering conditions for achieving higher sintered densities and mechanical properties. The effect of sintering temperature is evaluated by measuring the sintered density, densification parameter, microstructure, phase changes and mechanical properties. While a higher sintering temperature results in densification enhancement, it also leads to microstructural coarsening. Significant improvement in mechanical properties is obtained through age-hardening of sintered alloy under various ageing conditions (T4, T6 and T8).  相似文献   

11.
Recently, amorphous and nanocrystalline magnetically soft iron alloys have been used to create protective materials that are effective in a broad range of magnetic and electromagnetic fields. These alloys are obtained in strip form by superfast quenching of a plane melt jet on a rapidly spinning cooled disk. In the production of amorphous strip, metal melted in a high-frequency inductor is supplied through a cut on the surface of the cooling disk. The surface layers of the congealing strip in contact with the cooled disk are cooled more rapidly than higher layers in no contact with the disk. As a result, residual compressive stress may be formed on the contact side of the strip, while tensile stress may be formed on the free side. This may lead to anisotropic structure and properties over the strip thickness. In the present work, the structure is investigated by transmission microscopy (planar geometry and cross-sectional geometry) over the thickness of AMAG-200 Fe–Nb–Cu–Si–B alloy strip obtained by spinning. A relation is established between AMAG-200 Fe–Nb–Cu–Si–B alloy strip produced in controlled crystallization and the structure of the amorphous strip obtained by superfast quenching of melt at rates up to 106 K/s. That explains the structural anisotropy over the strip thickness. Heat treatment at 530°C forms excellent magnetic characteristics and decreases the work of destruction on account of the formation of optimal amorphous–nanocrystalline structure in terms of the bulk content and size of the crystallites. A scanning electron microscope is used to study the destruction of strip associated with the structure formed in the strip on superfast quenching from melt and after heat treatment at 530°C. In the state supplied, the surface fracture of the strip on sudden decrease in grain size is ductile; after heat treatment, it is consistently brittle.  相似文献   

12.
The structural and magnetic properties were studied for recycling Nd–Fe–B powders from Nd–Fe–B sintered magnets sludge via reduction diffusion (RD) with calcium hydride (CaH2) particles. For comparison, traditional reducing agent calcium granules were applied to prepare recycled Nd–Fe–B powders. Finer particle size and better size distribution as well as lower impurity content are achieved by using CaH2 instead of Ca. In detail, the average particle size of the recycled Nd–Fe–B powder is reduced from 4.66 to 3.43 μm, and the bimodal distribution disappears. Moreover, the residual calcium content and oxygen content are reduced to about 0.080 wt% and 0.32 wt%. As a consequence, the room-temperature magnetization of the CaH2-recycled Nd–Fe–B powder is increased to 146.30 emu/g, 6.8% and 33%, respectively, higher than that of Ca-reduced powder and the initial sludge. Further analysis indicates that CaH2 is able to reduce the sludge at lower temperature to fabricate well-dispersed, uniform recycled powder with high magnetization arising from a combination factors of its low melting point, low thermodynamic behavior, and the release of hydrogen during the reaction.  相似文献   

13.
《粉末冶金学》2013,56(3):210-212
Abstract

Preliminary work on the preparation process and some properties of VC–WC–Co alloys containing approximately 10 wt–%VC and 10 wt–%Co are reported. Sinterability of the alloys proved to be better than expected and hardness higher than the hardness of WC–Co alloys of equal cobalt content. The toughness was found to be superior to that of WC–Co alloys of equal hardness. PM/0742  相似文献   

14.
Russian Journal of Non-Ferrous Metals - Recently developed multicomponent eutectic alloys based on Al–Ca are promising for practical application, since they are characterized by low density...  相似文献   

15.
16.
Metallurgical and Materials Transactions A - A number of non-equimolar refractory high entropy alloys (RF HEAs) from the Al–Ti–Mo–Nb–V system are synthesized, with the...  相似文献   

17.
The effect of cobalt on the oxidation resistance of (Nd0.85Dy0.15)16.4(Fe0.89Co0.11)74.4Ti1.3B7.9 and (Pr0.56Dy0.39Sm0.05)14.5(Fe0.75Co0.25)78.8B6.7 alloys has been studied. The storage of magnet blanks made from these alloy in air for 200 h does not affect the magnetic properties of the sintered magnets owing to the presence of the phases (Pr, Dy)(Fe, Co)2, (Pr, Dy)(Fe, Co)2B2, (Pr, Dy)(Fe, Co)4B, (Pr, Dy)(Fe, Co)3B2, and (Pr, Dy)(Fe, Co)3, which are resistant to oxidation and ensure liquid-phase sintering of magnets. After 200-h exposure to air, oxidation of the blanks takes place, the rate of which decreases by more than two times at the expense of an increase in the cobalt content in the alloy.  相似文献   

18.
none 《粉末冶金学》2013,56(4):209-215
Abstract

The possibilities of the production of aluminium-base copper and/or silicon alloys by conventional powder compaction and sintering methods have been studied. The effects of various lubricants, pressing, and sintering conditions on the behaviour of Al–Cu and Al–Cu–Si alloys were evaluated systematically. The role of copper and silicon additions during compaction and sintering and their advantages or disadvantages are discussed. All alloys underwent large dimensional changes (sudden swelling followed by rapid contraction) during sintering at temperatures greater than Al–Cu eutectic temperature and it is suggested that a process of particle rearrangement is largely responsible for this behaviour. The mechanical properties of the alloys were highly dependent on the sintering temperature. PM/0215  相似文献   

19.
Samarium (Sm) has been widely used in making aluminum (Al)–Sm magnet alloy materials. The research team for this study developed a molten salt electrolyte system which directly produces Al–Sm alloy to replace the energy intensive conventional distillation technology. In this study, molten melt density was measured and operation conditions were optimized to separate Al–Sm alloy product from the fluoride molten melt electrolysis media based on density differences. Archimedes' principle was applied to measure density for the basic molten fluoride system (BMFS: Na3AlF6–AlF3–LiF–MgF2) electrolysis media in the temperature range from 905 to 1055 °C. The impact of temperature (t) and the Al2O3 and Sm2O3 addition ratio (w(Al2O3), w(Sm2O3)) in the basic fluoride system on molten melt density was examined. The fluoride molten melt density relationship was determined to be: ρ = 3.11701 ? 0.00802w(Al2O3) + 0.027825w(Sm2O3) ? 0.00117t. The test results showed that molten density decreases with increase in temperature and Al2O3 addition ratio, and increases with the addition of Sm2O3, and/or Al2O3 + Sm2O3. The separation of Al–Sm (density 2.3 g/cm3) product melt from the BMFS melt is achieved by controlling the BMFS density to less than 2.0 g/cm3. It is concluded that the optimal operation conditions to control the BMFS molten salt density to less than 2.0 g/cm3 are: maintain addition of Al2O3 + Sm2O3 (w(Al2O3) + w(Sm2O3)) < 9% of Na3AlF6, Al2O3/Sm2O3 ratio (w(Al2O3):w(Sm2O3)) > 7:3, and temperature between 965 and 995 °C.  相似文献   

20.
The present work is carried out to study the evaporation of Na2O from CaO–Al2O3–SiO2–TiO2–MgO–Na2O slags with high basicity and high alumina in the temperature range of 1500–1560°C. The ratio of evaporation was determined by monitoring the Na2O content change of the slag melt under isothermal reduction conditions. The results show that the evaporation ratio increases with increasing the temperature. Higher basicity and increasing concentrations of Na2O, Al2O3 are also found to increase the evaporation ratio of Na2O, while MgO addition only slightly enhances the evaporation ratio. With TiO2 content increasing, the evaporation ratio first increases and then decreases. The evaporation rate of Na2O appears to be controlled by chemical reaction at the slag/gas interface in the beginning, followed by a mixed reaction-mass transfer regime, and finally a liquid-phase mass transport step. The apparent activation energy is 134.74?kJ?mol?1 for the chemical reaction regime and 268.53?kJ?mol?1 for the liquid-phase mass diffusion step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号