首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
聚羧酸类减水剂对水化硅酸钙微观结构的影响   总被引:8,自引:0,他引:8  
用Na2SiO3·9H2O,Ca(NO3)2·4H2O化学试剂及聚羧酸类减水剂合成了水化硅酸钙(C-S-H)及掺杂聚羧酸有机大分子的 C-S-H.用X射线衍射、X射线光电子能谱、透射电镜等分析手段研究了聚羧酸类减水剂对C-S-H结构的影响.研究表明:聚羧酸类减水剂增加了Ca与Si摩尔比n(Ca)/n(Si)为0.83的C-S-H硅氧四面体聚合度,提高了C-S-H的结晶程度,其中聚羧酸有机大分子基团可内插到C-S-H结构的层间.在C-S-H形成过程中,聚羧酸有机大分子基团会通过其极性基团-COOM-与Ca2 键结,而Ca2 另一端与-O-Si-O-键连接,最后形成一个离子型交联结构.  相似文献   

2.
硅灰对C_3S水化的影响   总被引:7,自引:0,他引:7  
用传导型量热计、定量化学分析、三甲基硅烷化-凝胶渗透色谱分析、热分解气体分析和扫描电镜分析等方法研究了硅灰和氢氧化钙或硅酸三钙的反应。结果发现硅灰能和氢氧化钙立即反应,生成类似于C-S-H(Ⅱ)的水化硅酸钙。当硅灰过量时,则多余的硅灰能和已经生成的C-S-H继续反应,生成一种聚合度很高,但C/S很低(<1.0)的新型C-S-H。 在硅灰-C_3S系统中,硅灰对C_3S水化(特别是早期水化)表现出强烈促进作用。主要原因是硅灰有其巨大的活性表面积,可为反应产物C-S-H的早期沉淀提供一理想场所,从而使C_3S能在比较长时间内保持表面的相对“干净”,有利于C_3S的快速水化。另外,硅灰可不断消耗C_3S水化产物之一的氢氧化钙,也是促进C_3S水化的一个原因。当所有氢氧化钙都被消耗完毕后,多余的硅灰能和已有的C-S-H反应,生成高聚合度的另一种C-S-H。 硅灰是用以研究混凝土用的活性火山灰质材料的理想模型材料。通过X射线能谱分析发现,在硅灰-C_3S-H_2O体系中,未水化C_3S粒子周围存在着不同C/S的三层C-S-H。内层C-S-H直接与未水化C_3S接触,是由C_3S水化生成的,C/S≈1.5~1.6。中间层C-S-H的C/S与内层相近或略低。被认为是由硅灰和C_3S水化放出的Ca(OH)_2反应生成的。外层C-S-H的C/S很低(<1.0),而聚合度很高,很可能是由硅灰  相似文献   

3.
李国辉 《粉煤灰》2012,(4):1-3,9
以大掺量粉煤灰胶凝材料硬化浆体为研究对象,结合XRD、FTIR、NMR等仪器进行测试分析,研究高养护制度下粉煤灰掺量对其水化相C—S—H凝胶硅氧四面体聚合程度的影响规律。结果表明:高温养护的硬化浆体,其水化相C—S—H凝胶硅氧四面体聚合程度和Al原子取代Si原子的程度,在各个养护龄期始终高于常温养护的硬化浆体。  相似文献   

4.
刘晶  汪澜  考宏涛  王昕 《硅酸盐通报》2013,32(9):1714-1718
采用碱硅酸盐和钙盐的溶液反应方法,合成初始钙硅比为0.8、1.8的掺杂不同重金属离子的水化硅酸钙(C-S-H).对制备的C-S-H进行了XRD、IR、SEM测试分析,结果表明,掺杂重金属离子的低钙硅比C-S-H凝胶的衍射主峰强度下降,谱峰宽度增加;高钙硅比凝胶中钙和硅氧四面体的化学键遭到破坏,使Ca2+溶出,形成Ca(OH)2晶体;掺杂Pb的高钙硅比C-S-H凝胶,Q2伸缩振动峰向低波数方向偏移,Q1伸缩振动峰的吸收强度增加,硅氧四面体聚合度逐渐降低,链长变短;重金属离子可显著改变低钙硅比C-S-H凝胶形貌,使高钙硅比凝胶呈不规则团块状堆积.  相似文献   

5.
大体积混凝土施工过程中,为降低水化热而采用大量的粉煤灰替代水泥,故对高掺量粉煤灰水泥的水化硬化机理进行深入系统的研究具有重要的意义.以大掺量粉煤灰胶凝材料硬化浆体为研究对象,结合XRD、FTIR、NMR等测试分析,研究高养护制度下粉煤灰掺量对其水化相C-S-H凝胶硅氧四面体聚合程度的影响规律.结果表明:高温养护的硬化浆体,其水化相C-S-H凝胶硅氧四面体聚合程度和Al原子取代Si原子的程度,在各个养护龄期始终高于常温养护的硬化浆体.  相似文献   

6.
伍勇华  张鹏  程浩  陈畅  杨浩  杨颖刚 《硅酸盐通报》2017,36(7):2275-2279
合成了阴离子型和两性型聚羧酸减水剂,研究了两类聚羧酸减水剂对水泥水化热、蒸养胶砂和蒸养混凝土强度的影响.结果表明:在蒸养条件下,与阴离子型聚羧酸减水剂相比,掺两性型聚羧酸减水剂的水泥水化温峰更高;在相同水灰比时,掺两性聚羧酸减水剂的蒸养胶砂和蒸养混凝土的强度也更高.XRD分析可知,掺入两性聚羧酸减水剂在蒸养条件下生成更多的AFm和氢氧化钙,促进了C3S和C2S的水化.  相似文献   

7.
为探究水化硅酸钙(C-S-H)晶核剂对掺减水剂混凝土的影响,研究了不同钙硅比的水化硅酸钙对聚羧酸减水剂的吸附性能.通过120℃水热反应法制备水化硅酸钙,并采用XRD、SEM和29Si NMR对所制备的Ca/Si为1.0、1.3和1.6的水化硅酸钙样品进行表征;同时通过Zeta电势、总有机碳分析(TOC)和流动性分析探究了由钙硅比的变化对水化硅酸钙的Zeta电势和减水剂吸附性能以及对水泥浆体流动度的影响.试验结果表明,水化硅酸钙的链长和结晶度的优劣主要受到钙硅比的影响,钙硅比增大,链长变短,结晶度变差;水化硅酸钙的Zeta电势随着钙硅比增加而增大;C-S-H在超纯水中的电导率随钙硅比增加而变大;在不同氢氧化钙浓度的溶液中,Ca/Si为1.6的样品较1.0样品能吸附更多的减水剂;并且拥有较好的浆体流动性能.因此,高钙硅比的水化硅酸钙对聚羧酸减水剂拥有较强的吸附能力,并且对含聚羧酸减水剂的水泥浆体流动性能影响相对较小.  相似文献   

8.
李标  马芹永  张发 《硅酸盐通报》2022,41(12):4342-4352
为提高工业废渣的综合利用率,研制出一种绿色环保高性能的注浆材料。选用超细矿渣粉(UFS)和硅灰(SF)替代一定量的水泥,通过正交试验和极差分析法系统地研究了在不同水灰比下掺入不同含量的超细矿渣粉、硅灰以及聚羧酸减水剂(PCE)对注浆材料性能的影响,并对优化后的浆液和纯水泥浆液进行了性能对比及微观试验。结果表明:当超细矿渣粉质量分数从18%增大到20%时,可以增强浆液流动性能,硅灰可以提高结石体抗压强度并减小浆液泌水率,聚羧酸减水剂对降低浆液黏度具有显著效果;以28 d抗压强度和黏度为主要指标,得到浆液的较优配比为水灰比0.70、超细矿渣粉掺量20%(质量分数)、硅灰掺量12%(质量分数)、聚羧酸减水剂掺量0.16%(质量分数)。优化后的浆液泌水率、抗压强度及抗折强度均优于纯水泥浆液。掺入超细矿渣粉和硅灰后,浆液内部生成了钙矾石(AFt)和水化硅酸钙(C-S-H)等凝胶,填充了颗粒间的孔隙,使优化后的浆液结石体强度增大。  相似文献   

9.
采用X射线衍射(X-ray Diffraction,XRD)、29Si核磁共振(29Si Nuclear Magnetic Resonance,29Si NMR)、27Al核磁共振(27Al Nuclear Magnetic Resonance,27Al NMR)和BET氮吸附等方法研究了标准养护条件下C3A掺量对C3S-C3A复合浆体微结构的影响.结果表明:C3A的加入可以促进C3S-C3A复合浆体的水化,释放的Al3+可以进入C-S-H凝胶硅氧链上的桥硅氧四面体位置,形成Al掺杂C-S-H凝胶;随C3A掺量增大,复合浆体中C-S-H凝胶的Al[4]/Si和MCL增大;随养护龄期增大,Al掺杂C-S-H凝胶硅氧链上的Al[4]逐渐脱出,进入浆体并转化为Al[6],导致相同C3A掺量下的复合浆体中Al[4]相对含量下降,Al[6]相对含量增长;C3A的加入在降低复合浆体平均孔径的同时,也提高了浆体的孔隙率.  相似文献   

10.
近年来,随着混凝土技术的发展,外加剂已成为制备混凝土的重要辅助材料,但外加剂引入的各种离子对水化硅酸钙(C-S-H)的结构及形貌有较大影响。因此综合评述了无机外加剂中不同离子对C-S-H组成、结构及微观形貌的影响:Al^(3+)能够直接参与C-S-H结构的构建;Na^(+)、K^(+)、Cl^(-)可以加速水化反应,促进C-S-H凝胶的生成;适量的SO_(4)^(2-)有助于C-S-H结晶,而过量的SO_(4)^(2-)则会降低C-S-H的稳定性。详细分析了上述各离子对C-S-H硅氧四面体聚合度、层间距及平均分子链长的影响和研究进展,并在此基础上研究了无机外加剂中多离子共存对C-S-H结构的影响。无机外加剂对C-S-H硅氧四面体聚合度、层间距及平均分子链长的影响还需进一步研究。  相似文献   

11.
Amorphous silica particles (silica) are used in ultra-high performance concretes to densify the microstructure and accelerate the clinker hydration. It is still unclear whether silica predominantly increases the surface for the nucleation of C–S–H phases or dissolves and reacts pozzolanically. Furthermore, varying types of silica may have different and time dependent effects on the clinker hydration. The effects of different silica types were compared in this study by calorimetric analysis, scanning and transmission electron microscopy, in situ X-ray diffraction and compressive strength measurements. The silica component was silica fume, pyrogenic silica or silica synthesized by a wet-chemical route (Stoeber particles). Water-to-cement ratios were 0.23. Differences are observed between the silica for short reaction times (up to 3 days). Results indicate that silica fume and pyrogenic silica accelerate alite hydration by increasing the surface for nucleation of C–S–H phases whereas Stoeber particles show no accelerating effect.  相似文献   

12.
1H NMR has been used to characterise white Portland cement paste incorporating 10 wt.% of silica fume. Samples were measured sealed throughout the hydration without sample drying. Paste compositions and C–S–H characteristics are calculated based on 1H NMR signal intensities and relaxation analysis. The results are compared with a similar study of plain white cement paste. While the presence of silica fume has little influence on C–S–H densities, the chemical composition is impacted. After 28 days of sealed hydration, the Ca/(Si + Al) ratio of the C–S–H is 1.33 and the H2O/(Si + Al) ratio is 1.10 when 10% of silica fume is added to the white cement. A densification of the C–S–H with time is observed. There are no major changes in capillary, C–S–H gel and interlayer pore sizes for the paste containing silica fume compared to the plain white cement paste. However, the gel/interlayer water ratio increases in the silica fume blend.  相似文献   

13.
Under deep oil-well conditions of elevated temperature and pressure, crystalline calcium silicate hydrates are formed during Portland cement hydration. The use of silica rich mineral additives leads to the formation of crystalline hydrates with better mechanical properties than those formed without the additive. The effects of silica flour, silica fume (amorphous silica), and a natural zeolite mixture on the hydration of Class H cement slurries at 180 °C under externally applied pressures of 7 and 52 MPa are examined in real time using in-situ synchrotron X-ray diffraction. For some compositions examined, but not all, pressure was found to have a large effect on the kinetics of crystalline hydrate formation. The use of silica fume delayed both C3S hydration and the formation of crystalline silicate hydrates compared to what was seen with other silica sources.  相似文献   

14.
This paper presents 29Si MAS-NMR measurements that trace the hydration process in both cement paste and mortar specimens made from ordinary portland cement, Type I, when the cement content is replaced by 0, 10, 15, and 20 wt% of silica fume. The specimens were moist-cured for 3, 7, 14, 28, 90, and 180 days at a laboratory temperature of 21°C (69.8°F). Compressive strength for all tested specimens was also determined. The results show that the degree of hydration (Q1+ Q2)/(Q°+ Q1+ Q2) increased with increasing content of silica fume, especially at the early ages of 3 to 28 days. In the same manner, compressive strength results were markedly increased up to 14 days and were lowered at later ages, compared to the control mix (0 wt% silica fume).  相似文献   

15.
In this investigation, two mixes were used: ordinary Portland cement (OPC) and a blended cement prepared with the partial substitution of OPC by 10 mass% silica fume (SF). The setting and hardening characteristics were monitored by the aid of electrical conductivity as a function of curing time. The shear stress and electrical conductivity were studied at different temperatures, namely, 20, 35, 45 and 55 °C. As the temperature increases, the shear stresses decrease with the increase of shear rate. The height of electrical conductivity peaks of superplasticized cement pastes increases due to the increase of the paste fluidity. In the presence of 1.0% polycarboxylate (PC), the electrical conductivity of cement pastes decreases from 1 to 28 days. PC retards the hydration of cement pastes. The presence of PC extended the setting times of cement pastes at 35 °C than at 20 °C due to the increase in the adsorption capacity at this temperature. PC extends the dormant stage of the hydration process and delays the onset of the accelerating stage, without affecting its rate.  相似文献   

16.
Cement pastes densified with small particles (DSP) containing up to 48% silica fume by weight of cement, and hydrated to up to 180 d at room temperature, have been analyzed using TMS-GPC, TGA, and 29Si NMR to quantitatively estimate the amount of unreacted cement, Ca(OH)2, and residual silica fume, respectively. Using a mass balance approach, the CaO/SiO2 and H2O/SiO2 molar ratios of the C-S-H in the samples were calculated. For samples containing silica fume, the values of CaO/SiO2 lie between 0.9 and 1.3, depending on the degree of hydration and silica fume content, whereas for samples without silica fume they were 1.6. Silicate polymerization analysis using TMS-GPC suggests that the molecular structure of the C-S-H is similar to that formed in conventional hydration. No cross-linking species were found, but the fraction of higher polymers (above octamer) increases as the CaO/SiO2 ratio decreases.  相似文献   

17.
Hydration of portland cement pastes containing three types of mineral additive; fly ash, ground-granulated slag, and silica fume was investigated using differential thermal analysis, thermogravimetric analysis (DTA/TGA) and isothermal calorimetry. It was shown that the chemically bound water obtained using DTA/TGA was proportional to heat of hydration and could be used as a measure of hydration. The weight loss due to Ca(OH)2 decomposition of hydration products by DTA/TGA could be used to quantify the pozzolan reaction. A new method based on the composition of a hydrating cement was proposed and used to determine the degree of hydration of blended cements and the degree of pozzolan reaction. The results obtained suggested that the reactions of blended cements were slower than portland cement, and that silica fume reacted earlier than fly ash and slag.  相似文献   

18.
High performance concretes of high compressive strength are finding increasing applications in many fields of construction such as core walls and columns in tall buildings, long-span bridges and marine structures. In thick cross-sections, the high binder contents of some high strength concretes can result in the development of high in-situ temperatures. The combined influence of limited moist curing and high hydration temperatures may significantly influence the progress of hydration. This can affect the long-term development of in-situ strength and other engineering properties. Knowledge of in-situ strength development under these conditions is needed to ensure safe utilisation of this new generation of construction materials.

This paper presents results of an investigation on the strength development of high strength concretes with and without silica fume subjected to high in-situ temperature conditions. A temperature match conditioning (TMC) system was developed and used to simulate the semi-adiabatic temperature development within medium sized high strength concrete columns. The results of this investigation show that in-situ temperatures of up to 70 °C significantly increased the 7-day strength of a high strength silica fume concrete. Although no strength regression was observed up to 1 year, the silica fume concrete subjected to high early temperatures showed significantly lower strengths when compared to concrete cured at standard temperature. For the silica fume concrete subjected to high early temperatures, non-evaporable water contents suggest little additional hydration beyond 3 days.  相似文献   


19.
Effect of silica fume and fly ash on heat of hydration of Portland cement   总被引:5,自引:0,他引:5  
Results of calorimeter tests on Portland cement-silica fume-fly ash mixtures are presented. Data indicate that silica fume accelerates cement hydration at high water/cementitious ratios and retards hydration at low water/cementitious ratios. On the other hand, fly ash retards cement hydration more significantly at high water/cementitious ratios. When silica fume and fly ash are added together with cement, the reactivity of the silica fume is hampered and the hydration of the cementitious system is significantly retarded.  相似文献   

20.
研究了海水环境下掺入硅灰、粉煤灰、矿渣对硫铝酸盐水泥抗压强度、化学收缩和水化产物的影响规律.结果表明:当硅灰的掺量为2.5%时,水泥浆体的抗压强度比空白组高.矿渣掺量为10%的水泥浆体28 d抗压强度明显超过掺入硅灰和粉煤灰时的强度,60 d强度高于空白组.掺入2.5%硅灰后,水泥浆体的化学收缩增大;在水化早期,粉煤灰和矿渣的火山灰活性很低,导致水泥浆体的化学收缩降低.掺入10%硅灰加快了硫铝酸盐水泥3 d水化反应,钙矾石生成量增多,水泥浆体早期强度比掺其它掺合料有所提高,但体积过快膨胀会破坏其内部结构,对水泥浆体的强度发展不利.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号