首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
铜钼混合精矿的工艺粒度很细,在-0.043mm的级别中,辉钼矿、铜矿物的含量分别为77.30%、65.77%,造成铜钼浮选分离困难。试验首先对铜钼混合精矿进行浓密脱药,然后以水玻璃和硫氢化钠作为脉石矿物和铜矿物的抑制剂,并用氧化剂高锰酸钾进一步抑制微细颗粒次生铜矿物,在利用多次条件试验后闭路回水、再磨细度-0.043mm82.5%的条件下,经过一次粗选、二次扫选和四次精选,擦洗后再进行二次精选的闭路试验,获得了钼品位55.73%、含铜0.64%,钼回收率68.11%的钼精矿;铜品位21.36%、含钼0.1447%,铜回收率99.98%的铜精矿,实现了铜钼的有效分离。  相似文献   

2.
某低品位铜钼矿含铜0.38%,含钼0.013%,矿石铜、钼品位均较低,难以获得理想的选矿指标,资源未能得到有效利用。以BK304为捕收剂,采用“铜钼混选—铜钼分离”工艺流程,闭路试验可获得钼精矿含钼41.63%,钼回收率70.71%,铜精矿含铜24.14%,铜回收率83.98%;以丁黄为捕收剂,采用“二粗二扫,粗精矿再磨后三次精选”的强化选铜工艺流程,闭路试验可获得铜钼混合精矿含铜23.30%,含钼0.73%,铜回收率为86.96%,钼回收率77.34%。  相似文献   

3.
青海省某铜钼硫化矿石为低品位铜、钼混合矿石,铜、钼品位分别为 0. 30%、0. 041%。 矿石中铜、钼矿物 嵌布粒度粗细不均匀,主要钼矿物为辉钼矿,辉钼矿嵌布粒度微细,-0. 02 mm 粒级占有率为 34. 97%,石英等硅酸盐 类脉石矿物包裹了部分辉钼矿,钼矿物与铜矿物及脉石矿物密切共生。 采用铜钼混合浮选—铜钼分离浮选—钼粗精 矿再磨再选的工艺流程,进行了磨矿细度、再磨细度以及浮选药剂用量的试验研究。 结果表明,在磨矿细度为-0. 074 mm 占 70%时,以石灰为抑制剂、水玻璃为分散剂、柴油和 Z-200 为捕收剂,经 1 粗 2 精 1 扫铜钼混合浮选,混合浮选精 矿以硫化钠和巯基乙酸钠为抑制剂、柴油为捕收剂进行铜钼分离粗选,钼粗精矿再磨至-0. 037 mm 占 60%,经 5 次钼 精选,铜粗精矿经 1 次扫选,闭路试验获得了钼品位为 40. 75%、钼回收率为 44. 24%的钼精矿以及铜品位为 16. 38%、 铜回收率为 79. 96%的铜精矿,较好地实现了铜钼资源的有效回收。  相似文献   

4.
某低品位铜钼矿石选矿试验   总被引:2,自引:0,他引:2  
胡志刚  代淑娟  孟宇群  邵坤 《金属矿山》2012,41(6):68-71,78
某铜钼矿石中钼和铜含量较低,分别为0.081%和0.19%,且铜矿物嵌布粒度较细并与钼矿物密切共生,给两者分离带来一定困难。采用钼铜混合浮选-混合精矿精选1次后再磨再精选-铜钼分离流程对该矿石进行选矿试验,混合浮选时以石灰和水玻璃为调整剂、煤油和丁铵黑药为捕收剂,铜钼分离时以石灰、水玻璃和SK为调整剂、煤油为捕收剂,在1段和2段磨矿细度分别为-0.074 mm占70%和-0.045 mm占95%条件下,获得了钼品位为45.30%、钼回收率为84.16%的钼精矿和铜品位为14.28%、铜回收率为89.59%的铜精矿,为该矿石的开发提供了技术依据。  相似文献   

5.
青藏高原某特大斑岩型铜钼矿资源储量丰富,铜钼分离困难导致其中钼资源未得到有效利用。为综 合回收矿石中铜、钼等有价金属元素,确定该矿石最佳的选矿工艺流程及药剂制度,在工艺矿物学研究的基础上进 行了选矿试验研究。结果表明,矿石中铜品位为 1.21%,钼品位为 0.040%;矿石中主要铜矿物为辉铜矿和黄铜矿, 辉铜矿中铜占总铜的 82.80%;辉钼矿是矿石中钼的主要赋存矿物,以单体形式存在;矿石中的脉石矿物主要为长 石和石英;试样在最佳的药剂制度下,采用“铜钼混合浮选—混合精矿再磨—铜钼分离”的工艺流程,经 1 次混合粗 选、1 次混合精选和 2 次混合扫选得到铜钼混合精矿,混合精矿再磨进行铜钼分离粗选,分离粗选精矿经 6 次精选 得到钼精矿,1 次分离扫选得到铜精矿,最终获得含铜 26.46%、含钼 0.071%,铜回收率 92.06% 的铜精矿,含钼 46.400%、含铜 1.28%,钼回收率 75.40% 的钼精矿。试验指标良好,实现了铜钼的有效分离。  相似文献   

6.
谭鑫  何发钰  谭欣 《矿冶》2015,24(6):1-6
为了提升铜钼资源利用效率,对某铜钼尾矿开展铜钼再回收利用浮选试验研究。针对该矿石有用矿物品位低,矿物嵌布粒度较细,且铜的氧化率较高、矿石成分复杂的特点,采用"矿石脱泥—粗砂铜钼部分优先浮选—粗精矿再磨精选—铜钼硫混合浮选—混合精矿再磨后铜钼-硫分离—分离尾矿选硫"的浮选工艺流程,从铜、钼含量分别为0.086%和0.011%的原矿,获得铜钼混合精矿1含铜19.05%,含钼4.32%,铜、钼回收率分别为25.57%、49.71%;铜钼混合精矿2含铜2.49%,含钼0.22%,铜、钼回收率分别为3.73%、2.82%,较好地实现了铜钼资源的再回收利用。  相似文献   

7.
西藏某多金属矿选厂的铜钼混合精矿-0.048 mm含量为85%,铜、钼品位分别为19.06%和0.640%,金、银含量分别为6.98和490.90 g/t,99%以上的铜钼矿物为原生或次生硫化矿物。采用高效易降解药剂对该混合精矿进行铜钼分离选矿试验,结果表明,在磨矿细度为-0.048 mm占90%的情况下,以高效易降解的ZG-2为铜矿物抑制剂、HTL-3为钼捕收剂,采用1粗4精2扫、中矿顺序返回的闭路流程分离试样中的铜钼,最终可获得钼品位为47.68%、钼回收率为81.45%的钼精矿,和铜品位为19.26%、铜回收率为99.94%的铜精矿,金、银主要富集在铜精矿中,实现了该铜钼混合精矿的高效、低毒分离。  相似文献   

8.
在对某低品位难选斑岩型铜钼矿进行矿石性质研究的基础上,采用铜钼(硫)混合浮选-混合精矿脱硫精选-钼铜分离的工艺流程,闭路试验可获得含钼43.62%、钼回收率70.41%的钼精矿、含铜24.25%、铜回收率87.14%的铜精矿以及含硫39.30%、硫回收率79.08%的硫精矿。该试验研究结果可以作为开发利用该铜钼矿的技术依据。  相似文献   

9.
西藏某铜钼矿是以铜为主伴生钼的低品位铜钼矿,针对该铜钼混合精矿的性质特点,通过试验确定了铜钼分离的合适的工艺参数,经过一次粗选一次扫选四次精选的闭路试验,获得含Cu 19.05%、含Mo 0.293%,Cu作业回收率99.82%的铜精矿,含Mo 48.24%、含Cu 1.13%,Mo作业回收率83.20%的钼精矿,铜钼得到了有效分离。  相似文献   

10.
采用新型抑制剂BK511,对强捕收剂黄药浮选的铜钼混合精矿进行铜钼分离浮选试验。试验采用两次铜钼分离粗选、钼粗精矿一次精选后再磨、再经五次精选工艺流程,获得钼精矿含钼45.31%,含铜1.14%,钼回收率89.94%的浮选指标。结果表明,BK511对采用强捕收剂黄药浮选的铜钼混合精矿中的铜矿物,具有较好的抑制作用。  相似文献   

11.
对某含铜钼钨矿石进行了浮选分离工艺研究。该矿石为钨重选毛砂,除钨矿物外,还富含铜、钼等有价金属硫化矿物。根据矿石性质,采用铜钼混合浮选—铜钼分离的浮选工艺,综合回收矿石中的钨、铜、钼。铜钼混合浮选时,采用高效活化剂BK546,有利于矿石浮选脱硫,提高铜钼回收率,并减少钨的互含损失。闭路试验获得钼精矿含钼57.90%、铜0.68%、钼回收率96.44%;铜精矿含铜37.32%、回收率99.64%;钨精矿含WO3 68.12%、铜0.025%、钼0.005%、钨回收率97.30%。实现了矿石中钨、铜、钼的有效分离回收。  相似文献   

12.
研究采用新型抑制剂BK511,对强捕收剂黄药浮选的铜钼混合精矿进行了铜钼分离浮选试验研究。试验采用两次铜钼分离粗选、钼粗精矿一次精选后再磨、再经五次精选工艺流程,获得了钼精矿含钼45.31%,含铜1.14%,钼回收率89.94%的浮选指标。试验结果表明,BK511对采用强捕收剂黄药浮选的铜钼混合精矿中的铜矿物,具有较好的抑制作用。  相似文献   

13.
某铜钼矿石的选矿试验研究   总被引:2,自引:0,他引:2  
于雪 《矿冶工程》2012,32(1):32-35
对某铜钼矿石进行了选矿试验研究。采用铜钼混选, 铜钼混合粗精矿经一段再磨、铜钼一粗三精分离的浮选工艺流程, 以石灰为调整剂, 煤油为捕收剂混合浮选铜钼, QN为铜矿物抑制剂, 进行铜钼分离, 获得了钼精矿钼品位为48.12%、钼回收率为87.93%, 铜精矿铜品位为13.19%、铜回收率为87.16%。  相似文献   

14.
藏东某低品位斑岩型铜钼矿石铜、钼品位分别为0.62%和0.028%,矿石中的主要金属矿物有黄铜矿、蓝辉铜矿、铜蓝、黝铜矿、孔雀石、黄铁矿等,辉钼矿等微量,主要脉石矿物为石英等。矿石中铜钼矿物嵌布粒度微细,共生关系密切、复杂,铜钼分选回收难度大。为确定该矿石的高效开发利用工艺,进行了选矿试验研究。结果表明,矿石在磨矿细度为-0.074 mm占65%的情况下进行1粗3精2扫铜钼混浮、铜钼混合精矿再磨至-0.045 mm占85%的情况下进行1粗4精2扫铜钼分离浮选,可获得铜品位为26.70%、铜回收率为87.23%的铜精矿和钼品位为47.59%、钼回收率为84.18%的钼精矿,高效地实现了矿石中铜、钼的回收与分离。  相似文献   

15.
某斑岩型铜钼矿石铜、钼品位分别为0.339%和0.022%,现场在磨矿细度为-0.074 mm占60%的情况下,先采用1粗3精3扫、中矿顺序返回流程获得铜钼混合精矿,再进行铜钼分离,但混合精矿Cu、Mo品位分别仅为17.23%、0.629%,Cu、Mo回收率分别仅为86.40%、48.60%。为改善混合浮选指标,在现场磨矿细度下进行了药剂优化研究。结果表明,在选矿工艺流程不变的情况下,用捕收剂Pj-053+荆江钼替代Pj-053+变压器油,最终可获得铜、钼品位分别为18.89%、1.023%,铜、钼回收率分别为92.50%、77.19%的铜钼混合精矿,与现场生产指标比较,混合精矿Cu、Mo品位分别提高了1.66、0.394个百分点,Cu、Mo回收率分别提高了6.10、28.59个百分点,指标改善显著。  相似文献   

16.
为解决德兴铜矿铜钼分离工艺硫化钠用量大、产生的碱性废水中COD含量高、废水处理成本高等问题,结合铜钼混合精矿粒度细、铜钼矿物组成简单、单体解离度高的特点,开展了磁浮联合工艺选矿试验研究。通过条件试验确定了较优的磁选工艺参数,磁选扩大试验获得了磁选精矿产率39.16%、铜品位29.27%、钼损失率6.08%的指标;对磁选尾矿进行了浮选分离试验,获得了精矿钼品位46.54%、钼作业回收率93.97%的指标;综合计算表明,采用磁浮联合工艺处理含铜25.56%、含钼1.04%的铜钼混合精矿,可获得铜品位26.02%、铜回收率99.79%的铜精矿及钼品位46.54%、钼回收率88.30%的钼精矿,铜钼分离指标较优。此外,由于磁选作业提前分离出近40%的高铜低钼铜精矿,大幅降低了浮选处理量,使硫化钠等浮选药剂用量降低40%以上,显著降低了碱性废水的COD含量及后续水处理成本,具有显著的经济效益和环保效益。  相似文献   

17.
青海某铜钼矿含钼0.084%,铜含量0.067%。工艺矿物学研究表明,原矿中钼主要以辉钼矿形式存在,铜以黄铜矿、辉铜矿及斑铜矿等形式赋存。针对矿石性质,结合探索实验,最终采用铜钼优先浮选工艺处理该矿石。在磨矿细度为-74μm 70%条件下,经一次粗选一次扫选两次空白精选得钼粗精矿,钼粗精矿再磨后经三次精选获得了钼品位50.21%、回收率85.21%的钼精矿;钼浮选尾矿用硫酸铜活化后经一次粗选一次扫选四次精选,获得了品位15.32%、回收率54.92%的铜精矿,实现了有价元素的综合回收。  相似文献   

18.
玉龙铜矿Ⅰ号矿体混合矿石选矿试验   总被引:1,自引:0,他引:1  
为了给西藏玉龙铜矿Ⅰ号矿体的开发提供依据,对该矿体各矿带矿石组成的混合矿石进行了选矿试验研究。针对矿石中除铜外还伴生有钼、铜以硫化铜和氧化铜两种形式存在、钼主要以硫化钼形式存在的特点,试验采用硫化铜钼混合浮选-分离浮选、混浮尾矿再浮选氧化铜的工艺流程,最终获得了铜品位为18.13%、铜回收率为79.31%的综合铜精矿和钼品位为45.97%、钼回收率为79.39%的钼精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号