首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 837 毫秒
1.
纵向振动圆管流场与阻力特性的数值模拟   总被引:1,自引:0,他引:1  
在绝大多数换热设备中,流体绕流诱发的管束振动现象普遍存在,并在很大程度上决定强化换热的效果.由于对换热管束振动条件下的流场与换热特性缺乏深入的分析,影响了流体诱导振动强化传热技术的推广应用.利用CFD流场软件对换热管束强迫振动条件下的流场分布、换热特性及振动阻力状况进行了数值模拟研究,考察了管束振动频率在0.33~50 Hz范围内漩涡生成与脱落形态以及换热管束的局部场协同程度.数值模拟结果表明,管束较高频率的振动显著改善了流场的场协同度,提高了换热效率.  相似文献   

2.
应用Fluent软件数值模拟超声空化对太阳集热器中不同管形(圆管和波纹管)换热效果的影响,并利用场协同理论对数值模拟的结果进行分析,分析结果表明:超声波频率和声压幅值对圆管和波纹管的换热效果均有影响,超声波频率越小、声压幅值越大,越有利于强化换热;超声波在管内传播时场协同数比无超声波大,且场协同数随声压幅值的增大而增大,此时温度场与速度场的协同程度较好;考虑强化换热与流体减阻之间的关系可知声压幅值越小,管内换热的综合性能效果较好。  相似文献   

3.
本研究分别对圆管、波节管和横纹管在Fluent软件中进行数值模拟,模拟了3种管型在紊流工况下的换热效果并对数值模拟所得到的结果用场协同的理论分析。结果表明:从场协同理论得出加入超声波会增强场的协同程度,增强换热管的换热效果;圆管、波节管、横纹管的场协同数则随着雷诺数的增加而减小;而努塞尔数和表面传热系数随着雷诺数的增加而增加,综合性能系数随着雷诺数的增加而增加,而效能评价系数会随着雷诺数的增加而减小。  相似文献   

4.
采用理论推导与数值模拟结合的方法,通过求解流动方程及能量方程得到壁面法向振动下流体流动特性变化规律,并分析振动对换热的影响。结果表明:层流状态下,低强度振动使壁面附近流体质点产生法向速度,但影响范围很小,对换热影响有限;随着振动强度的增大,流场逐渐转变为湍流,导致换热系数提升。通过数值模拟计算壁面平均努塞尔数随振动强度及来流速度的变化规律。结果表明:对于低速流体,当振动达到某一临界值后能增强换热效果,努塞尔数随振动强度增大而增加,最佳换热相位角在200°左右,低雷诺数下振动强化换热效果较为明显,对流换热系数最大可提升300%。  相似文献   

5.
通过Fluent软件求解二维雷诺时均Navier-Stokes方程,对整体振动二维直管内流场的传热进行数值模拟,分析了流体流速及振动参数对流场及温度场特性的影响。结果表明:振动会对直管内流场产生扰流;给直管施加振动后,直管换热强度也增加;随着换热管道的加长,换热效果随着振动频率和振幅的增大,会在低频率和低振幅的换热强度基础上下降,最多下降18.3%。  相似文献   

6.
两种内翅片管对流换热特性数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
应用层流模型及湍流模型数值模拟方法,结合两种边界条件处理方法分别对两种纵向内翅片管内的流动与传热性能进行了研究,其中湍流计算采用可实现 k~∈两方程模型.将两种计算模型数值结果与实验结果进行了对比,结果表明:湍流模型数值模拟结果较层流更接近于实验值,同时发现两种内翅片管内流动从层流发展到湍流的临界雷诺数远小于传统光管的临界雷诺数.针对湍流模型模拟结果分别拟合出了两种内翅片管Nu-Re及f-Re的关联式,拓宽了实验数据的应用范围;通过场协同原理定量对比分析了两种内翅片管强化换热机理,研究表明纵向突起内翅片管的场协同程度好于纵向平翅片管,起到强化传热的作用.  相似文献   

7.
为了比较湍流模型对缸盖鼻梁区换热计算结果的影响,采用三种湍流模型对简单的T型截面刚体进行数值模拟计算,并与实验数据进行了对比。结果表明,在相同边界条件下,不同湍流模型的计算结果有很明显的差别。在沸腾状态下,对于换热问题的计算,采用AKN模型和SST模型都比较合适。其中AKN模型的计算值与实验值的偏差最小。  相似文献   

8.
定壁温水平传热管外降膜对流显热换热特性理论研究   总被引:2,自引:0,他引:2  
刘振华  朱群志 《热能动力工程》2000,15(5):464-466,476
采用层流模型对定壁温边界条件时水平管外垂降液膜的强制对流显热换热性能进行了数值计算。计算中对管顶部的冲击滞止区和管侧部的自由绕流区分别采用不同的坐标变换方法进行微分方程组筒化。根据滞止区计算结果确定自由烧流区的初始边界条件。计算结果证明管径对平均换热系数的影响不容忽视。定壁温条件时的平均换热系数比定热通量时约高12%到20%左右。  相似文献   

9.
提出了一种新型换热管型,即椭圆截面螺旋扭曲组合管。以场协同理论为指导,通过改变管型形状参数组合方式,对椭圆截面螺旋扭曲组合管进行数值模拟及分析,并进行不同Re数下圆管换热Nu数与经验公式对比,结果表明:组合比为0.4,长短径比为2.0,扭曲角度为90°时,综合性能最优,确定椭圆截面螺旋扭曲组合管对换热的强化是有效的,模拟结果是可信的。  相似文献   

10.
利用数学模型的数值计算探讨了常热流密度条件下矩形管内层流对流换热表面传热系数随流速的变化规律。通过一个算例计算,并给出了该算例的表面传热系数与水流流速的拟合式。根据计算结果发现,对流换热表面传热系数随管长逐渐减小,之后稳定在某个数值,其分布类似外掠平板层流对流换热;流速也影响表面传热系数的大小;而热流密度对换热效果没有影响。把算例的结果与传统的等效直径圆管算法比较,发现后者的误差较大。  相似文献   

11.
吕丽霞  李素芬  李亮  东明 《节能》2005,(6):6-9,2
针对土壤源热泵地下垂直U型换热埋管,建立了周围土壤的非稳态温度场的数学模型,并利用隐式有限差分法进行了数值模拟。通过对制冷和制热工况的模拟,得到土壤温度沿径向的变化规律、埋管出水温度的变化规律及埋管的热作用半径的变化规律。  相似文献   

12.
给出了一种利用测定圆管对流传热温度场求解确定成分的非共沸混合物的组分的方法。基于定压力条件下液体低雷诺数圆管层流充分发展段流体力学特性,利用数值方法求解变热参数对流传热模型温度场特性,采用反问题方法对对流传热控制方程的热参数进行非线性模拟和反算,通过反演计算热参数得到物质组分的定量值。对非线性热参数条件的对流传热控制方程和反问题L-M方法进行了误差分析,通过试验比较,测定了对流传热过程温度场的理论计算组分与预设的组分。结果表明,测定温度场推算的非共沸混合物组分与实际测定结果满足预设误差。  相似文献   

13.
土壤源热泵U型垂直埋管传热过程的数值研究   总被引:1,自引:0,他引:1  
铁勇 《节能》2009,28(5):12-15
针对土壤源热泵地下U型垂直埋管,建立了周围土壤的非稳态温度场的数学模型,并利用Matlab软件进行求解。通过对夏季制冷工况的模拟,研究了管内流量和回填材料对出水温度的影响,还研究了埋管间距和热作用半径对单位管长换热量的影响。  相似文献   

14.
Natural convection around a horizontal circular pipe coupled with heat conduction in the solid structure is numerically investigated using a preconditioning method for solving incompressible and compressible Navier–Stokes equations. In this method, fundamental equations are completely reduced to an equation of heat conduction when the flow field is static (zero velocity). Therefore, not only compressible flows but also very slow flows such as natural convection in a flow field and heat conduction in a static field can be simultaneously calculated using the same computational algorithm. In this study, we first calculated the compressible flow around a NACA0012 airfoil with conduction in the airfoil and then simulated natural convections around a horizontal circular pipe with a different heat conductivity. Finally, we numerically investigated the effect of heat conductivity of the pipe on natural convection.  相似文献   

15.
Yu-Fei Mao  Bo-Feng Bai  Lie-Jin Guo 《传热工程》2013,34(11-12):1082-1092
In the present study, a novel model was established to investigate the enhanced heat transfer to turbulent pipe flow of supercritical pressure fluids. The governing equations for the steady turbulent compressible pipe flow were simplified into the one-dimensional nondimensionalized forms based on the boundary layer theory. A conventional mixing length turbulence model for constant-property pipe flows was modified by introducing the effect of density fluctuations into the equations of turbulent transport, and the modified turbulence model was applicable to both constant-property and variable-property pipe flows. With the suggested model, which was a combination of the nondimensional governing equations and the modified turbulence model, the numerical calculations were carried out for the turbulent convective heat transfer of water in round tubes at supercritical pressures. The results showed that the present model can provide a relatively precise prediction about the effect of pressure, mass flux, and wall heat flux on heat transfer for supercritical fluid flows and greatly reduce the calculation workload. The modified turbulence model showed a much better agreement with the experimental results than the original turbulence model.  相似文献   

16.
An experimentally validated numerical model is developed to analyze the operation of a piezoelectrically actuated cantilever vibrating close to a heated surface. The vibrating cantilever acts as a fan and provides localized cooling. The numerical results for the flow field and heat transfer show satisfactory agreement with experiments. The numerical model is used to develop fan curves for the piezoelectric fans, using a methodology similar to that used in constructing pump or fan curves for conventional fans. A simplified model based on stagnation region heat transfer in impingement flows is also proposed to estimate the heat transfer from a piezoelectric fan. The velocities obtained from the piezoelectric fan curves generated are used in this impingement heat transfer model, and the predictions are found to agree with measured stagnation zone Nusselt numbers with an average deviation of 17%.  相似文献   

17.
The development of a mechanistic procedure to estimate the convection heat transfer in horizontal gas-liquid intermittent—or slug—flow is presented. In broad terms, the mean convective heat transfer coefficient is calculated following an averaging procedure based on the unit cell model of the slug flow pattern. The flow parameters (i.e., unit cell frequency, liquid slug and elongated bubble length and velocity, and liquid hold-up) were obtained from empirical data for air/water flows in a 15 m-long, 25.4 mm ID copper pipe and for natural gas (mostly methane and ethane) and oil or water flows in an actual size, 200 m-long, 150 mm ID steel pipe. A time-averaging procedure based on the unit cell parameters was then used to calculate the mean convective heat transfer coefficient. The slug flow parameters taken on the small scale air/water loop and the actual size pipeline were used for comparisons. Heat transfer data from the small scale air/water loop were used to validate the results calculated using the averaging procedure. Finally, the approach herein proposed also showed good agreement with previously published data and well-known correlations.  相似文献   

18.
In this paper, various ways for improving the thermal performance of heat pipe solar water heaters were provided based on the heat transfer analysis and have been improved by experiments and practical use. It is shown that the increase of the heat transfer space of heat pipe condensation section is the effective way to improve the instantaneous efficiency of heat pipe solar water heater, and the increase of L/D ratio of heat pipe is also important for improving its whole day performance.  相似文献   

19.
采用数值计算方法对一种应用于半导体制冷片热端散热的翅片式热管散热器进行模拟,探究自然对流条件下不同翅片参数对散热器换热特性的影响。结合多目标遗传算法(NSGA-Ⅱ),以影响散热器散热的两个主要参数——翅片表面传热系数和肋面效率为优化目标,对散热器整体做出综合优化,并对优化结果进行K均值聚类分析,提出了翅片端优化原则。结果表明,肋面效率对散热器性能的影响有限,提高表面传热系数可显著降低散热器总热阻;与未优化方案相比,所选优化方案可使基板热端面温度下降3.5K,散热器热阻降低18.22%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号