首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new tetrakis 4‐(2,5‐di‐2‐thiophen‐2‐yl‐pyrrol‐1‐yl) substituted nickel phthalocyanine (NiPc‐SNS) was synthesized and characterized by elemental analysis, Fourier Transform Infrared (FT‐IR), and UV–vis spectroscopies. The electrochemical polymerization of this newly synthesized NiPc‐SNS was performed in dichloromethane (DCM)/tetrabutylammonium perchlorate (TBAP) solvent/electrolyte couple. An insoluble film was deposited on the electrode surface, both during repetitive cycling and constant potential electrolysis at 0.85 V. Resulting polymer film, P(NiPc‐SNS), was characterized utilizing UV–vis and FT‐IR spectroscopic techniques and its electrochemical behavior was investigated via cyclic voltammetry (CV). Spectroelectrochemical behavior of the polymer film on indium tin oxide (ITO) working electrode was investigated by recording the electronic absorption spectra, in situ, in monomer‐free electrolytic solution at different potentials and it is found that the P(NiPc‐SNS) film can be reversibly cycled between 0.0 and 1.1 V and exhibits electrochromic behavior; dark olive green in the neutral and dark blue in the oxidized states with a switching time of 1.98 s. Furthermore, the band gap of P(NiPc‐SNS) was calculated as 2.27 eV from the onset of π–π* transition of the conjugated backbone. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Jhinuk Gupta 《Polymer》2010,51(22):5078-5086
A series of fluorescent conjugated polymers, poly(pyreneethynylene)s, have been designed and synthesized to investigate the effect of shape of polymer backbone on physical properties. Polymers with linear and kinked backbone were synthesized using 1,6- and 1,8-disubstituted pyrene. The target copolymers were designed to incorporate various spacer units, such as, alkoxyphenyl, carbazole and fluorene on the polymer backbone. Characterization of the target compounds was achieved by NMR, IR, GPC and MALDI-TOF mass spectrometry. Detailed investigation on their optical, electrochemical and thermal properties revealed significant contribution of the geometry of polymer backbone towards physical properties. Kinked backbone of cisoid-polymers was found to result in lower optical band gap, less negative EHOMO and higher thermal stability as compared to their linear analogues, most probably due to the coiling of polymer chains. Comparison of the physical properties of the polymers with those of the model compounds suggested similar extent of conjugation through 1,6- and 1,8-position of pyrene.  相似文献   

3.
A novel alternating copolymer with 3‐alkylthiophene and oxadiazole (or pyridine) units in ordered arrangement was synthesized with vinyl as a bridge for the first time. The synthesis process included four steps: bromomethylation, preparation of the ylide monomer, the formation of 2,4‐divinyl‐3‐alkylthiophene, and Heck alternating copolymerization. The Fourier transform infrared spectroscopy, 1H‐NMR, and gel permeation chromatography measurements showed that all of the copolymers had the required structures. The weight‐average molecular weights of the copolymers were in the range 5500–15,000 with a relatively low polydispersity index of 1.4–1.7. The solubility of the copolymers in common solvents (e.g., methylene chloride, chloroform, tetrahydrofuran) was excellent. The optical properties and bandgap of the copolymers was compared with corresponding poly(3‐alkylthiophene) homopolymers. The photoluminescence quantum efficiency (QE) of the copolymers improved markedly in chloroform. The QEs of poly(2,4‐divinyl‐3‐hexylthiophene‐alt‐2,5‐diphenyl‐1,3,4‐ oxadiazole) and poly(2,4‐divinyl‐3‐octythiophene‐alt‐2,5‐diphenyl‐1,3,4‐oxadiazole) were 43.2 and 34.2%, respectively, which were about 20 and 21 times higher than those of the homopolymers, respectively. The ionization potential of the copolymers between 5.53 and 6.13 eV was appropriated to poly(3‐alkylthiophene)s. The high electron affinity of the copolymers (2.71–2.95 eV) made the electrons inject from the cathode more easily. With excellent solubility, low bandgap energy, high QE, and both electron‐transporting and hole‐transporting abilities, the proposed copolymers might be excellent polymeric materials for applications in polymer light‐emitting diodes, light‐emitting electrochemical cells, and polymer solar cells. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
A new conducting polymer was synthesized by electrochemical polymerization of 4‐(2,5‐di‐2‐thiophen‐2‐yl‐pyrrol‐1‐yl)‐phthalonitrile (SNS‐PN). Electrochemical polymerization of SNS‐PN was performed in acetonitrile/0.2M LiClO4 solvent/electrolyte couple. Characterizations of the resulting polymer P(SNS‐PN) were carried out by cyclic voltammetry, UV–vis, and Fourier transform infrared (FTIR) spectroscopic techniques. Spectroelectrochemical studies revealed that P(SNS‐PN) has an electronic band gap of 2.45 eV and exhibits electrochromic behavior. The switching ability of polymer was also monitored and the percentage transmittance change (ΔT%) was found as 24%. It is also found that P(SNS‐PN) is fluorescent and its fluorescence intensity enhances in the presence of cations. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Four novel highly soluble p‐/n‐poly[(2,5‐divinyl‐3,4‐dialkylthiophene)‐alt‐2,6‐pyridine] (PA2TV‐Py) and poly[(2,5‐divinyl‐3,4‐dialkylthiophene)‐alt‐(2,5‐diphenyl‐1,3,4‐oxadiazole)] (PA2TV‐OXD) are prepared by Heck coupling approach to compare their photoelectric properties. Characterizations of the copolymers include FT‐IR, 1H‐NMR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), UV–vis spectroscopy, photoluminescence (PL), and electroluminescence (EL). Four alt‐copolymers exhibit excellent solubility in common organic solvents (e.g., CHCl3, THF) and good thermal stabilities, losing less than 5% on heating to ~ 250°C. The optical properties depict that the band‐gap energy of PA2TV‐Py and PA2TV‐OXD is similarly, ranging from 2.68 to 2.80 eV in solid film and 2.90–2.97 eV in CHCl3 solution. PA2TV‐Pys can emit bright turquoise light with quantum efficiencies (QE) of 30.6 and 53.9%, which about 10‐18 times higher than that of homopolymer in CHCl3 solution. Furthermore, the QE of two PA2TV‐OXDs (purple fluorescence) are increased to 43.6 and 68.5%, respectively, about 1.3–1.4 times higher than that of PA2TV‐Pys. Electrochemical results indicate that the electron affinity (Ea) of four alt‐copolymers range from 2.79 to 3.09 eV, which are propitious to electrons injecting and transporting from the cathode. As a result, these novel copolymers present expected good electroluminescence(EL) performance in their single layer polymer light‐emitting device (PLED) with configuration of ITO/polymer/Al, which turn‐on voltages are between 4.0 and 5.8 V and emit bright green–yellow (538 nm) and yellow (545–552 nm) EL light. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The synthesis of rod–coil diblock copolymers with narrow polydispersity was achieved for the first time by TEMPO‐mediated ‘living’ free radical polymerization of styrene and 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene. The block architecture of the two diblock copolymers thus prepared, MPCS‐block‐St (5400/2400) and MPCS‐block‐St (10 800/8700), was confirmed by GPC, 1H and 13C NMR and DSC studies. The liquid‐crystalline behaviour of the copolymers was studied by DSC and polarized optical microscope. It was observed that both copolymers showed two distinct glass transitions, corresponding to polystyrene and poly(‐2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene). Above the glass transition temperature of rigid block, liquid‐crystalline phase was formed. The clearing point of the phase is higher than the polymer decomposition temperature. © 2000 Society of Chemical Industry  相似文献   

7.
The copolymerization of pyrrole with 3,4‐ethylenedioxythiophene (EDOT) is successfully achieved in boron trifluoride diethyl etherate via direct anodic oxidation of the monomer mixtures on indium‐tin oxide working electrodes. The resultant copolymers are characterized by electrochemical methods, FT‐IR, XPS, SEM, and spectroelectrochemical analysis. The copolymer films present excellent electrochromic properties especially the multicolor electrochromism which can be tuned through the feed ratio of pyrrole and EDOT. The neutral copolymer films exhibit blue‐shift with the increasing feed ratio of pyrrole and EDOT, and the calculated band gaps of the copolymers are as low as that of PEDOT film. Furthermore, the electrochemical and optical stability has been improved by the incorporation of EDOT units into the polymer chains. The copolymer prepared with the changing feed ratio of pyrrole and EDOT at 1/4 retains 71% of its original electroactivity after 500 cycles and 72% of its optical contrast after 500 steps. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
In this study, a multifunctional ‘clicked’ naphthalimide carbazole derivative (CNaP) was synthesized via Huisgen 1,3‐dipolar cycloaddition reaction. Combining carbazole as an electroactive group with naphthalimide as a fluorescence group via click chemistry imparts multifunctional properties to this unique structure. CNaP was characterized via Fourier transform IR, 13C and 1H NMR spectroscopy as well as fluorescence and electrochemical measurements. The electrochemical polymerization of the CNaP monomer was carried out in acetonitrile/boron trifluoride diethyl etherate (2:1) (v/v) by the cyclic voltammetry technique. The resulting polycarbazole‐derived conductive polymer was characterized via optical and electrochemical measurements. PCNaP displayed multi‐electrochromism behaviour with good optical contrast (41% at 693 nm) and switching time (1.92 s at 693 nm). These results demonstrate that the new ‘clicked’ fluorescent, polycarbazole‐derived conductive polymer can be used in various applications such as electrochemical/optical sensors and electrochromic and fluorescence imaging devices. © 2019 Society of Chemical Industry  相似文献   

9.
Two classes of light emitting Poly(p‐phenylenevinylene) (PPV) based conjugated‐nonconjugated copolymers (CNCPs) have been synthesized. The conjugated chromophores containing 2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene (MEHPV) and 2,5‐dimethyl‐1,4‐phenylenevinylene (DMPV) moieties are rigid segments and nonconjugated portion containing hexyl units are flexible in nature. All copolymers were synthesized by well‐known Wittig reaction between the appropriate bisphosphonium salts and the dialdehyde monomers. The resulting polymers were found to be readily soluble in common organic solvents like chloroform, THF and chlorobenzene. The effect of chromophore substituents on the optical and redox properties of the copolymers has been investigated. Color tuning was carried out by varying the molar percentage of the comonomers. The UV‐Vis absorption and PL emission of the copolymers were in the range 314–395 nm and 494–536 nm respectively. All the polymers show good thermal stability. Polymer light‐emitting diodes (PLEDs) were fabricated in ITO/PEDOT:PSS/emitting polymer/cathode configurations of selected polymers using double‐layer, LiF/Al cathode structure. The emission maxima of the polymers were around 499–536 nm, which is a blue‐green part of the color spectrum. The threshold voltages of the EL polymers were in the range of 5.4–6.2 V. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
A novel series of well‐defined alternating poly[2,7‐(9,9‐di(2‐ethylhexyl)fluorenyl)‐alt‐pyridinyl] (PDEHFP) copolymers were synthesized using palladium(0)‐catalyzed Suzuki coupling reaction in high yields. These polymers were characterized using 1H NMR, UV‐visible and fluorescence spectroscopies, gel permeation chromatography, thermal analysis and cyclic voltammetry. The optical properties of the copolymers, including photoluminescence (PL) and electroluminescence (EL), were studied. The difference in linkage position of pyridinyl units in the polymer backbone has significant effects on the electronic and optical properties of polymers in solution and in film state. Meta‐linkage (3,5‐ and 2,6‐linkage) of pyridinyl units in the polymer backbone is more favorable for pure blue emission and prevention of aggregation of polymer chains. PDEHFPs with 2,6‐ and 3,5‐linkage of pyridinyl units have relatively high PL efficiency of 37 and 44% in the film state. In comparison with homopolymer PDEHF, the copolymers with pyridinyl units possess low lowest unoccupied molecular orbital energy levels for easy electron injection from a cathode. Strong EL is observed and light‐emitting diodes (LEDs) exhibit typical rectifying characteristics. The emission intensity starts to increase at around 12 V. The emission peak wavelengths of the polymers roughly coincide with those of PL. This series of fluorene–pyridine‐based alternating copolymers seem to be candidates for polymeric LEDs. © 2013 Society of Chemical Industry  相似文献   

11.
Three series of polybenzimidazole (PBI) random copolymers (2,5‐pyridine‐r‐meta‐PBI, 2,5‐pyridine‐r‐para‐PBI, and 2,5‐pyridine‐r‐2OH‐PBI) were synthesized and cast into phosphoric acid (PA) doped membranes using the PolyPhosphoric Acid (PPA) Process. Copolymer composition was adjusted using co‐monomers that impart high and low solubility characteristics to simultaneously control overall copolymer solubility and gel membrane stability. Measured under a static compressive force at 180 °C, copolymer membranes generally exhibited decreased creep compliance with increasing polymer content. Within each series of copolymer membranes, increasing polymer contents proportionally reduced the phosphoric acid/polymer repeat unit (PA/PRU) ratios and their respective proton conductivities. Some copolymer membranes exhibited comparable fuel cell performances (up to 0.66 V at 0.2 A cm−2 following break‐in) to para‐PBI (0.68 V at 0.2 A cm−2) and equal to 3,5‐pyridine‐based high solids membranes. Furthermore, 2,5‐pyridine copolymer membranes maintained a consistent fuel cell voltage of >0.6 V at 0.2 A cm−2 for over 8600 h under steady‐state operation conditions. Phosphoric acid loss was monitored during long‐term studies and demonstrated acid losses as low as 5.55 ng cm−2 h−1. The high‐temperature creep resistance and long‐term operational stabilities of the 2,5‐pyridine copolymer membranes suggest that they are excellent candidates for use in extended lifetime electrochemical applications.  相似文献   

12.
Carbazole-containing donor-acceptor type conjugated polymers were prepared by Sonogashira cross-coupling reaction of 3,6-diethynyl-9-hexadecylcarbazole and arylene dibromides, and the optical and electrochemical properties were extensively investigated. Copolymerization with 4,7-dibromo-2,1,3-benzothiadiazole furnished the orange-colored polymer with a charge-transfer band at 440 nm in CH2Cl2, indicating efficient intramolecular donor-acceptor interactions. On the other hand, the color of the copolymer with 2,5-dibromopyridine was ocher and the longest wavelength absorption band was 381 nm in CH2Cl2, suggesting almost negligible donor-acceptor interactions. This difference was also reflected by the emission spectra, solvatochromic behaviors, and electrochemical redox potentials. Comparison of the ethynylene spacer between the donor and acceptor moieties to other π-spacers revealed that the ethynylene spacer serves as a more efficient π-spacer than vinylene and direct connection (without spacer) for strong donor-acceptor coupling in this polymer system.  相似文献   

13.
Two fluorescent monomers N‐phenyl‐N‐(4‐vinylphenyl)pyren‐1‐amine (vinyl‐PyPA) and 1‐vinyl pyrene (VPy) were synthesized in good yields. A series of soluble conductive vinyl copolymers P(PyPA‐co‐VPy) containing vinyl‐PyPA and VPy moieties in different composition ratios were prepared by free radical solution polymerization. These copolymers showed high Tg (190?201 °C) and good thermal stability. The photoluminescence emission maxima of the copolymers were all in the range 474.5?478.5 nm, which was similar to the poly(N‐phenyl‐N‐(4‐vinylphenyl)pyren‐1‐amine) (P(PyPA)) (475 nm) but blue shifted compared with poly(1‐vinyl pyrene) (PVPy) (490.5 nm). The lifetime of the copolymers increased from 10.2 to 29.7 ns with an increase in pyrene content. The copolymers had higher quantum yields (0.51) than those of the homopolymers of P(PyPA) (0.48) and PVPy (0.13). The highest occupied molecular orbital of the copolymers remained relatively unchanged from P(PyPA), while the lowest unoccupied molecular orbital varied from ?2.41 eV to ?2.51 eV with an increase in pyrene ratio in the copolymers. The energy bandgaps of the copolymers (from 2.70 eV to 2.81 eV) were smaller than those of P(PyPA) (2.82 eV) and PVPy (3.47 eV). Two polymer light‐emitting diode (PLED) series were attempted including indium tin oxide (ITO) (fluorocarbon (CFx) treated)/P(PyPA‐co‐VPy)/LiF/Al and ITO(CFx treated)/P(PyPA‐co‐VPy)/1,3,5‐Tri(1‐phenyl‐1H‐benzo[d]imidazol‐2‐yl)phenyl (TPBi)/LiF/Al. The results suggested that the PyPA moiety is hole conducting and the PLEDs can achieve high luminance from 650 to 1150 cd m?2 (at 100 mA cm?2) only when an electron injecting layer TPBi is employed. © 2013 Society of Chemical Industry  相似文献   

14.
A new electrochoromic polymer poly(8,11‐bis(3,4‐ethylenedioxy thiophen‐2‐yl)acenaphtho[1,2‐b]‐quinoxaline) (PBEAQ) was synthesized by electrochemical polymerization of the corresponding monomer (BEAQ) in a 0.1 M tetraethylammonium tetrafluoroborate (TEABF4) dichloromethane–acetonitrile (2 : 1, v : v) solution. The monomer and polymer were characterized by elemental analysis, 1H‐NMR, IR, and UV‐vis spectroscopy. The electrochemical and optical properties of polymer were investigated by cyclic voltammetry and UV‐vis spectroscopy. Cyclic voltammetry and spectroelectrochemistry studies demonstrated that the polymer can be reversibly reduced and oxidized (both n‐ and p‐doped) between ?2 V and +1.5 V vs. Ag/Ag+. The polymer had a transmissive light blue color in the oxidized state and reddish color in the reduced state. Undoped polymer shows UV‐vis absorption peaks at 615 nm in solution, 650 nm in solid state, and has an optical band gap of 1.5 eV. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Three new donor–acceptor type poly{2,2l‐(3,4‐ dialkoxythiophene‐2,5‐diyl)bis[5‐(2‐thienyl)‐1,3,4‐oxadiazole]}s ( P1, P2, and P3 ) were synthesized starting from thiodiglycolic acid and diethyl oxalate through multistep reactions. The polymerization was carried out using chemical polymerization technique. The optical and charge‐transporting properties of the polymers were investigated by UV‐visible, fluorescence emission spectroscopic and cyclic voltammetric studies. The polymers showed bluish‐green fluorescence in solutions. The electrochemical band gaps were determined to be 2.03, 2.09, and 2.17 eV for P1 , P2, and P3, respectively. The nonlinear optical properties of new polymers were investigated at 532 nm using single beam Z‐scan and degenerate four‐wave mixing (DFWM) techniques with nanosecond laser pulses. The polymers exhibited strong optical limiting behavior due to “effective” three‐photon absorption. Values of the effective three‐photon absorption ( 3PA ) coefficients, third‐order nonlinear susceptibilities (χ(3)), and figures (F) of merit were calculated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
The effects of 2‐aminobenzenesulfonic acid (orthanilic acid), 3‐aminobenzenesulfonic acid (metanilic acid), and 4‐aminobenzenesulfonic acid (sulfanilic acid) on the electropreparation and properties of polyaniline (PANI) were investigated in acetonitrile containing 200 mM fluorosulfonic acid. The cyclic voltammetric studies of the products showed characteristics similar to those of conventional PANI in neutral solution, but there was a significant difference between the electrochemical behavior of the polymer films in basic solution. The sulfur‐to‐nitrogen ratios were found to be about 0.50, which indicated that copolymers were formed. The copolymers were soluble in a basic aqueous solution and in 1‐methyl‐2‐pyrrolidinone and dimethyl sulfoxide solvents. The dry electrical conductivity values of the copolymers were measured. The structure and properties of these conducting copolymers in acetonitrile were elucidated with cyclic voltammetry, Fourier transform infrared spectroscopy, and ultraviolet–visible absorption spectroscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1227–1235, 2002  相似文献   

17.
Two new donor–acceptor types of polymer, poly{2‐(biphenyl‐4‐yl)‐5‐[3,4‐dialkoxy‐5‐(1,3,4‐oxadiazol‐2‐yl)thiophen‐2‐yl]‐1,3,4‐oxadiazole}s, were synthesized starting from 2,2′‐sulfanediyldiacetic acid and diethyl ethanedioate through multi‐step reactions. The polymerization was carried out via the polyhydrazide precursor route. The optical and charge‐transporting properties of the polymers were investigated using UV‐visible and fluorescence emission spectroscopic and cyclic voltammetric studies. The polymers showed bluish‐green fluorescence in solutions. The electrochemical band gaps of the polymers were determined to be 2.16 and 2.22 eV. The nonlinear optical properties of the polymers were investigated at 532 nm using the single‐beam Z‐scan technique with nanosecond laser pulses. The polymers showed strong optical limiting behaviour due to effective three‐photon absorption. The values of the three‐photon absorption coefficients for the polymers were found to be 9 × 10?24 and 17 × 10?24 m3 W?2, which are comparable to those of good optical limiting materials. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
Two narrow band gap fluorene‐based copolymers with donor–acceptor (D–A) structure on the polymer side chain and/or main chain are synthesized by Pd‐catalyzed Stille coupling reactions. The two copolymers have excellent thermal stability. The effects of D–A structure on the main and side chains on the absorption and electrochemical properties are studied. The copolymer PF‐BTh‐DBT with D–A structure both on the main and side chains has broader and stronger absorption and narrower band gap than the copolymer PF‐BTh with only a pendent D–A structure. The power conversion efficiency of the assembled solar cell using PF‐BTh‐DBT as donor and PC71BM as acceptor is 1.6% with open‐circuit voltage (Voc) 0.84 V under simulated AM 1.5 G solar irradiation (100 mW/cm2). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3276–3281, 2013  相似文献   

19.
Although poly(ethylene terephthalate) (PET) has excellent basic properties, this polymer tends to crystallize rapidly and has a rather high melting temperature, a low glass‐transition temperature, and low impact on notched articles for some potential applications. Copolymerization is a reasonable method for improving the properties of PET. 1,4‐cyclohexane dimethanol (CHDM) is one of the most important comonomers for PET. In this research, PET and PET copolymers containing 5–30% CHDM were prepared from comonomer mixtures by two‐step melt polycondensation. The copolymers were synthesized in a home‐made laboratory setup. The first synthesis step was conducted under pressure, and the second was performed in vacuo at a high temperature (230–290°C). The microstructure of the synthesized copolymers was studied with Fourier transform infrared and nuclear magnetic resonance. The comonomer content in the polymer chain was determined from the nuclear magnetic resonance spectrum. The presence of the comonomer in the copolymer chain was random. Differential scanning calorimetry was used to study the thermal properties of the copolymers to detect changes in the polymer properties. CHDM reduced the heat of fusion and melting and glass‐transition temperatures of the PET copolymers. Process modeling was performed with mass balances of different functional groups and species. Equations of mass balances were integrated numerically. Numerical simulation and experimental results were in very good agreement. By modeling, the effects of the reaction temperature and feed molar ratio on the conversion and formation of diethylene glycol were studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Thiophene functionalized polystyrene samples (TFPS) were synthesized by atom transfer radical polymerization (ATRP) of styrene, followed by Suzuki coupling with 3‐thiophene (Th) boronic acid. Conducting graft polymer of TFPS with thiophene was achieved at 1.5 V in tetrabutylammonium tetrafluoroborate/dichloromethane (TBAFB/DM) by electrochemical methods. Spectroelectrochemical analysis of the resulting copolymers [P(TFPS‐co‐Th)] reflected electronic transitions at 449, 721 and 880 nm, revealing π ? π* transition, polaron and bipolaron band formation, respectively. We also successfully established the utilization of dual type complementary colored polymer electrochromic devices using P(TFPS‐co‐Th)/poly(3,4‐ethylenedioxythiophene (PEDOT) in sandwich configuration. The switching ability, stability and optical memory of the electrochromic device were investigated by UV–visible spectrophotometry and cyclic voltammetry. Device switches between brown and blue color with a switching time of 1.3 s were prepared with optical contrast (%ΔT) of 25 %. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号