首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of Poly(l ‐lactide)/Poly(d ‐lactide) (PLLA/PDLA) block length ratio on the crystallization behavior of star‐shaped poly(propylene oxide) block poly(d ‐lactide) block poly (l ‐lactide) (PPO–PDLA–PLLA) stereoblock copolymers with molecular weights (Mn) ranging from 6.2 × 104 to 1.4 × 105 g mol?1 was investigated. Crystallization behaviors were studied utilizing differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). Only stereocomplex crystallites formed in isothermal crystallization at 140 to 156°C for all samples. On one hand, the overall crystallization rate decreased as PLLA/PDLA block length ratio increased. As PLLA/PDLA block length ratio increased from 7:7 to 28:7, the value of half time of crystallization (t1/2) delayed form 2.85 to 5.31 min at 140°C. On the other hand, according to the Lauritzen–Hoffman theory, the fold‐surface energy (σe) was calculated. σe decreased from 77.7 to 73.3 erg/cm2 with an increase in PLLA/PDLA block length ratio. Correspondingly increase in nucleation density was observed by the polarized optical microscope. Results indicated that the PLLA/PDLA block length ratio had a significant impact on the crystallization behavior of PPO–PDLA–PLLA copolymers. POLYM. ENG. SCI., 55:2534–2541, 2015. © 2015 Society of Plastics Engineers  相似文献   

2.
Stereo multiblock poly(lactic acid)s (PLA)s and stereo diblock poly(lactic acid) (DB) with a wide variety of block length of 15.4–61.9 lactyl units are synthesized, and the effects of block length sequence on crystallization and spherulite growth behavior are investigated at different crystallization temperatures, in comparison with neat poly(L ‐lactide) (PLLA), poly(D ‐lactide) (PDLA), and PLLA/PDLA blend. Only stereocomplex crystallites as crystalline species are formed in the stereo multiblock PLAs and DB, irrespective of block length and crystallization temperature. The maximum crystallinities (33–61%), maximum radial growth rate of spherulites (0.7–56.7 μm min?1), and equilibrium melting temperatures (182.0–216.5°C) increased with increasing block length but are less than those of PLLA/PDLA blend (67 %, 122.5 μm min?1, and 246.0°C). The spherulite growth rates and overall crystallization rates of the stereo multiblock PLAs and DB increased with increasing block length and are lower than that of PLLA/PDLA blend. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Poly(ethylene glycol)‐poly(L ‐lactide) diblock and triblock copolymers were prepared by ring‐opening polymerization of L ‐lactide with poly(ethylene glycol) methyl ether or with poly(ethylene glycol) in the presence of stannous octoate. Molecular weight, thermal properties, and crystalline structure of block copolymers were analyzed by 1H‐NMR, FTIR, GPC, DSC, and wide‐angle X‐ray diffraction (WAXD). The composition of the block copolymer was found to be comparable to those of the reactants. Each block of the PEG–PLLA copolymer was phase separated at room temperature, as determined by DSC and WAXD. For the asymmetric block copolymers, the crystallization of one block influenced much the crystalline structure of the other block that was chemically connected to it. Time‐resolved WAXD analyses also showed the crystallization of the PLLA block became retarded due to the presence of the PEG block. According to the biodegradability test using the activated sludge, PEG–PLLA block copolymer degraded much faster than PLLA homopolymers of the same molecular weight. © 1999 John Wiley amp; Sons, Inc. J Appl Polym Sci 72: 341–348, 1999  相似文献   

4.
Ring opening polymerization of L ‐lactide was realized in the presence of monomethoxy poly(ethylene glycol), using zinc lactate as catalyst. The resulting PLLA‐PEG diblock copolymers were characterized by using 1H‐NMR, SEC, WAXD, and DSC. All the copolymers were semicrystalline, one or two melting peaks being detected depending on the composition. Equilibrium melting temperature (Tm0) of PLLA blocks was determined for three copolymers with different EO/LA molar ratios. Tm0 decreased with decreasing PLLA block length. A copolymer with equivalent PLLA and PEG block lengths was selected for melt crystallization studies and the resulting data were analyzed with Avrami equation. The obtained Avrami exponent is equal to 2.6 ± 0.2 in the crystallization temperature range from 80 to 100°C. In addition, the spherulite growth rate of PLLA‐PEG was analyzed by using Lauritzen‐Hoffmann theory in comparison with PLLA homopolymers. The nucleation constant was found to be 2.39 × 105 K2 and the free energy of folding equal to 53.8 erg/cm2 in the range of 70–94°C, both higher than those of PLLA homopolymers, while the spherulite growth rate of the diblock copolymer was lower. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

5.
Polymeric materials prepared from renewable natural resources are now being accepted as “bio‐based polymers”, because they are superior to the conventional petroleum‐based polymers in reducing the emission of carbon dioxide. Among them, poly(L ‐lactide) (PLLA) prepared by fermentation and polymerization is paid an immediate attention. Although PLLA exhibits a broad range of physico‐chemical properties, its thermal and mechanical properties are somewhat poorer for use as ordinary structural materials. For improving these inferior properties, a stereocomplex form consisting of PLLA and its enantiomer poly(D ‐lactide) (PDLA) has high potential because of showing high melting nature (230 °C). It can be formed by simple polymer blend of PLLA and PDLA or more easily with stereoblock polylactides (sb‐PLA) which are PLLA/PDLA block copolymers. These novel PLA polymers, named “Neo‐PLA”, can provide a wide range of properties that have never be attained with single PLLA. Neo‐PLA retains sustainability or bio‐based nature, because both monomers L ‐ and D ‐lactic acids are manufactured from starch by fermentation. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
Ring‐opening polymerization of L ‐ or D ‐lactide was realized at 140 °C for a period of 7 days in the presence of dihydroxyl poly(ethylene glycol) (PEG), with M?n = 4000 g mol?1, using zinc lactate as initiator. The resulting poly(L ‐lactide)–PEG–poly(L ‐lactide) and poly(D ‐lactide)–PEG–poly(D ‐lactide) triblock copolymers are water soluble with polylactide (PLA) block length ranging from 11 to 17 units. Both the tube inverting method and rheological measurements were used to evaluate the gelation properties of aqueous solutions containing single copolymers or L /D copolymer pairs. Stereocomplexation between poly(L ‐lactide) and poly(D ‐lactide) blocks is observed for mixed solutions. Hydrogel formation is detected in the case of relatively long PLA blocks (DP PLA = 17), but not for copolymers with shorter PLA blocks (DP PLA = 11–13) due to partial racemization of L ‐lactyl units. Racemization is largely reduced when the reaction time is shortened to 1 day. Under these conditions, DP PLA of 8 is sufficient for the stereocomplexation of PLA–PEG block copolymers, and DP PLA above 10 leads to the formation of hydrogels of PLA–PEG block copolymers. On the other hand, racemization appears as a general phenomenon in the (co)polymerization of L ‐lactide with Zn(Lac)2 as initiator, although it is negligible or undetectable in the case of high molar mass polymers. Therefore, racemization is the limiting factor for the stereocomplexation‐induced gelation of water‐soluble PLA–PEG block copolymers where the PLA block length generally ranges from 10 to 30. Reaction conditions including initiator, time and temperature should be strictly controlled to minimize racemization. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
Two enantiomeric triblock ABA copolymers composed of poly(L ‐lactide)–poly(ethylene glycol)–poly(L ‐lactide) (PLLA–PEG–PLLA) and poly(D ‐lactide)–poly(ethylene glycol)–poly(D ‐lactide) (PDLA–PEG–PDLA) were synthesized with two different middle‐block PEG chain lengths by ring‐opening polymerization of L ‐lactide and D ‐lactide in the presence of PEG, respectively. A pair of enantiomeric triblock copolymers were combined to form a stereocomplex by a solvent‐casting method. The triblock copolymers and their stereocomplexes were characterized by 1H‐ and 13C‐NMR spectroscopy and gel permeation chromatography. Their crystalline structures and crystalline melting behaviors were analyzed by the wide‐angle X‐ray diffraction method and differential scanning calorimetry. The stereocomplex formed between a pair of enantiomeric triblock copolymers exhibited a higher crystalline melting temperature with a distinctive 3/1 helical crystalline structure. PLLA–PEG–PLLA and its stereocomplex with PDLA–PEG–PDLA were used to fabricate a series of microspheres encapsulating a model protein drug, bovine serum albumin (BSA). They were prepared by a double‐emulsion solvent‐evaporation method. The morphological aspects of the microspheres were characterized and BSA release profiles from them were investigated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1615–1623, 2000  相似文献   

8.
Poly(l ‐lactic acid) (PLLA) was blended with a series of four‐armed poly(? ‐caprolactone)‐block ‐poly(d ‐lactic acid) (4a‐PCL‐b ‐PDLA) copolymers in order to improve its crystallization rate and mechanical properties. It is found that a higher content of 4a‐PCL‐b ‐PDLA copolymer or longer PDLA block in the copolymer lead to faster crystallization of the blend, which is attributed to the formation of stereocomplex crystallites between PLLA matrix and PDLA blocks of the 4a‐PCL‐b ‐PDLA copolymers. Meanwhile, the PDLA block can improve the miscibility between flexible PCL phase and PLLA phase, which is beneficial for improving mechanical properties. The tensile results indicate that the 10% 4a‐PCL5kb ‐PDLA5k/PLLA blend has the largest elongation at break of about 72% because of the synergistic effects of stereocomplexation between enantiomeric PLAs, multi‐arm structure and plasticization of PCL blocks. It is concluded that well‐controlled composition and content of 4a‐PCL‐b ‐PDLA copolymer in PLLA blends can significantly improve the crystallization rate and mechanical properties of the PLLA matrix. © 2017 Society of Chemical Industry  相似文献   

9.
Crystallization kinetics behavior and morphology of poly(3‐hydroxybutyrate) (PHB) blended with of 2–10 wt% loadings of poly(L ‐ and D ‐lactic acid) (PLLA and PDLA) stereocomplex crystallites, as biodegradable nucleating agents, were studied using differential scanning calorimetry, polarizing‐light optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). Blending PLLA with PDLA at 1:1 weight ratio led to formation of stereocomplexed PLA (sc‐PLA), which was incorporated as small crystalline nuclei into PHB for investigating melt‐crystallization kinetics. The Avrami equation was used to analyze the isothermal crystallization of PHB. The stereocomplexed crystallites acted as nucleation sites in blends and accelerated the crystallization rates of PHB by increasing the crystallization rate constant k and decreasing the half‐time (t1/2). The PHB crystallization was nucleated most effectively with 10 wt% stereocomplexed crystallites, as evidenced byPOM results. The sc‐PLA complexes (nucleated PHB crystals) exhibit much small spherulite sizes but possess the same crystal cell morphology as that of neat PHB based on the WAXD result. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
Poly(vinyl acetate) (PVAc) was added to the crystalline blends of poly(ethylene oxide) (PEO) and poly(L ‐lactide) (PLLA) (40/60) of higher molecular weights, whereas diblock and triblock poly(ethylene glycol)–poly(L ‐lactide) copolymers were added to the same blend of moderate molecular weights. The crystallization rate of PLLA of the blend containing PVAc was reduced, as evidenced by X‐ray diffraction measurement. A ringed spherulite morphology of PLLA was observed in the PEO/PLLA/PVAc blend, attributed to the presence of twisted lamellae, and the morphology was affected by the amount of PVAc. A steady increase in the elongation at break in the solution blend with an increase in the PVAc content was observed. The melting behavior of PLLA and PEO in the PEO/PLLA/block copolymer blends was not greatly affected by the block copolymer, and the average size of the dispersed PEO domain was not significantly changed by the block copolymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3618–3626, 2001  相似文献   

11.
The poly(l ‐lactide)‐b‐poly(ethylene glycol)‐b‐poly(l ‐lactide) block copolymers (PLLA‐b‐PEG‐b‐PLLA) were synthesized in a toluene solution by the ring‐opening polymerization of 3,6‐dimethyl‐1,4‐dioxan‐2,5‐dione (LLA) with PEG as a macroinitiator or by transterification from the homopolymers [polylactide and PEG]. Two polymerization conditions were adopted: method A, which used an equimolar catalyst/initiator molar ratio (1–5 wt %), and method B, which used a catalyst content commonly reported in the literature (<0.05 wt %). Method A was more efficient in producing copolymers with a higher yield and monomer conversion, whereas method B resulted in a mixture of the copolymer and homopolymers. The copolymers achieved high molar masses and even presenting similar global compositions, the molar mass distribution and thermal properties depends on the polymerization method. For instance, the suppression of the PEG block crystallization was more noticeable for copolymer A. An experimental design was used to qualify the influence of the catalyst and homopolymer amounts on the transreactions. The catalyst concentration was shown to be the most important factor. Therefore, the effectiveness of method A to produce copolymers was partly due to the transreactions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40419.  相似文献   

12.
The ring‐opening polymerization of L ‐ or D ‐lactide was realized in the presence of dihydroxyl or monomethoxy poly(ethylene glycol) (PEG) with a number‐average molecular weight of 2000. The resulting low‐molar‐mass poly(L ‐lactide) (PLLA)/PEG and poly(D ‐lactide) (PDLA)/PEG triblock and diblock copolymers were characterized with nuclear magnetic resonance (NMR), differential scanning calorimetry, size‐exclusion chromatography, and X‐ray diffractometric analysis. Bioresorbable hydrogels were successfully prepared from aqueous solutions containing both copolymers because of interactions and stereocomplexation between the PLLA and PDLA blocks. Gelation was evaluated with the tube inverting method and rheological measurements. A phase diagram was realized with gel–sol transitions as a function of concentration. The rheological properties of the hydrogels were investigated under various conditions through changes in the copolymer concentration, temperature, time, and frequency. It was concluded that the hydrogels constituted a dynamic and evolutive system because of the continuous formation/destruction of crosslinks and degradation. Further studies are underway to elucidate the degradation behavior and the potential of these substances as drug carriers or cell culture scaffolds. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Supramolecular poly(?‐capolactone)/poly(lactide) alternating multiblock copolymers were prepared by UPy‐functionalized poly(lactide)‐b‐ poly(?‐capolactone)‐b‐ poly(lactide) copolymers. The prepared supramolecular polymers (SMPs) exhibit the characteristic properties of thermoplastic elastomers. The stereo multiblock SMPs (sc‐SMPs) were formed by blending UPy‐functionalized poly(l ‐lactide)‐b‐ PCL‐b‐ poly(l ‐lactide) (l ‐SMPs) and UPy‐functionalized poly(d ‐lactide)‐b‐ PCL‐b‐ poly(d ‐lactide) (d ‐SMPs) due to stereocomplexation of the PLLA and PDLA blocks. Sc‐SMPs with low content of d ‐SMPs (≤20%) are transparent, elastic solids, while those having high d ‐SMPs content are opaque, brittle solids. The effects of l ‐SMPs/d ‐SMPs mixing ratios on thermal, crystallization behaviors, crystal structure, mechanical and hydrophilic properties of sc‐SMPs were deeply investigated. The incorporation of UPy groups depresses the crystallization of polymer, and the stereocomplex formation accelerates the crystallization rate. The used initiator functionalized polyhedral oligomeric silsesquioxanes causes a different effect on the crystallization of PLA and PCL blocks. The tensile strength and elongation at break of l d /d d ‐SMPs (d represents the initiator diethylene glycol) are significantly larger than that of l p /d p ‐SMPs (p represents the initiator polyhedral oligomeric silsesquioxanes), and their heat resistance and hydrophilicity can be also modulated by the l ‐SMPs/d ‐SMPs mixing ratios and the different initiators. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45575.  相似文献   

14.
The effect of xylan propionate (XylPr) as a novel biomass‐derived nucleating agent on the poly(lactide) sterecomplex was investigated. Addition of XylPr to an enantiomeric blend of poly(l ‐lactide) (PLLA) and poly(d ‐lactide) (PDLA) was performed in either the solution state or molten state. The solution blend of PLLA/PDLA with XylPr was prepared by mixing equal volumes of 1 wt% XylPr/PLLA and 1 wt% XylPr/PDLA solutions in chloroform and precipitating in methanol. The solution blend with XylPr showed shorter half‐time crystallization than the solution blend without XylPr in isothermal crystallization between 80 and 140 °C, although homocrystallization occurred. Enhanced stereocomplex crystallization in the solution blend with XylPr was observed at 180 °C, where no crystallization occurred in the solution blend without XylPr. Addition of XylPr to PLLA/PDLA blend in the molten state was performed at 240 °C. Thereafter, the melt blend of PLLA/PDLA with or without XylPr was either quenched in iced water or isothermally crystallized directly from the melt. Isothermal crystallization of the melt‐quenched blend with XylPr gave a similar result to the solution blend with XylPr. In contrast, the melt‐crystallized blend with XylPr formed only stereocomplex crystals after crystallization above 140 °C. Furthermore, the melt‐crystallized blend with XylPr showed a higher crystallinity index and melting temperature than the melt‐crystallized blend without XylPr. This shows that XylPr promotes stereocomplex crystallization only when the blend of PLLA/PDLA with XylPr is directly crystallized from the molten state just after blending. © 2016 Society of Chemical Industry  相似文献   

15.
A new stereo pentablock copolymer consisting of poly(l ‐lactide) (PLLA: A), poly‐d ‐lactide (PDLA: B), and poly(butylene succinate) (PBS: C) is synthesized by two‐step ring‐opening polymerization of d ‐ and l ‐lactides in the presence of bis‐hydroxyl‐terminated PBS prepolymer that has been prepared by the ordinary polycondensation. The pentablock copolymers (PLLA‐PDLA‐PBS‐PDLA‐PLLA) as well as the triblock copolymers (PLLA‐PBS‐PLLA) obtained as the intermediates show different properties depending on the polymer compositions. In the pentablock copolymers, the direct connection of the PLLA and PDLA blocks allows easy formation of the stereocomplex crystals, while the introduction of the semicrystalline PBS block is effective not only for changing the crystallization kinetics but also for imparting an elastomeric property.

  相似文献   


16.
A series of biodegradable chitosan‐graft‐polylactide (CS‐g‐PLA) copolymers were prepared by grafting of poly(L ‐lactide) (PLLA) or poly(D ‐lactide) (PDLA) precursor to the backbone of chitosan using N,N′‐carbonyldiimidazole as coupling agent. The composition of the copolymers was varied by adjusting the chain length of PLA as well as the ratio of chitosan to PLA. The copolymers synthesized via this ‘graft‐onto’ method present interesting properties as shown by NMR and infrared spectroscopy, gel permeation chromatography and solubility tests. Hydrogels were prepared by mixing water‐soluble CS‐g‐PLLA and CS‐g‐PDLA solutions. Gelation was assigned to stereocomplexation between PLLA and PDLA blocks as evidenced by differential scanning calorimetry and wide‐angle X‐ray diffraction measurements. Thymopentin (TP5) was taken as a model drug to evaluate the potential of these CS‐g‐PLA hydrogels as drug carriers. An initial burst and a final release up to 82% of TP5 were observed from high‐performance liquid chromatography analysis. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
Hexa‐armed star‐shaped poly(ε‐caprolactone)‐block‐poly(L ‐lactide) (6sPCL‐b‐PLLA) with dipentaerythritol core were synthesized by a two‐step ring‐opening polymerization. GPC and 1H NMR data demonstrate that the polymerization courses are under control. The molecular weight of 6sPCLs and 6sPCL‐b‐PLLAs increases with increasing molar ratio of monomer to initiator, and the molecular weight distribution is in the range of 1.03–1.10. The investigation of the melting and crystallization demonstrated that the values of crystallization temperature (Tc), melting temperature (Tm), and the degree of crystallinity (Xc) of PLLA blocks are increased with the chain length increase of PLLA in the 6sPCL‐b‐PLLA copolymers. On the contrary, the crystallization of PCL blocks dominates when the chain length of PLLA is too short. According to the results of polarized optical micrographs, both the spherulitic growth rate (G) and the spherulitic morphology are affected by the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
The confined crystallization of poly(?‐caprolactone) (PCL) block in poly(?‐caprolactone)–poly(l ‐lactide) (PCL‐PLLA) copolymers was investigated using differential scanning calorimetry, polarized optical microscopy, scanning electronic microscopy and atomic force microscopy. To study the effect of crystallization and molecular chain motion state of PLLA blocks in PCL‐PLLA copolymers on PCL crystallization morphology, high‐temperature annealing (180 °C) and low‐temperature annealing (80 °C) were applied to treat the samples. It was found that the crystallization morphology of PCL block in PCL‐PLLA copolymers is not only related to the ratio of block components, but also related to the thermal history. After annealing PCL‐PLLA copolymers at 180 °C, the molten PCL blocks are rejected from the front of PLLA crystal growth into the amorphous regions, which will lead to PCL and PLLA blocks exhibiting obvious fractionated crystallization and forming various morphologies depending on the length of PLLA segment. On the contrary, PCL blocks more easily form banded spherulites after PCL‐PLLA copolymers are annealed at 80 °C because the preexisting PLLA crystal template and the dangling amorphous PLLA chains on PCL segments more easily cause unequal stresses at opposite fold surfaces of PCL lamellae during the growth process. Also, it was found that the growth rate of banded spherulites is less than that of classical spherulites and the growth rate of banded spherulites decreases with decreasing band spacing. © 2019 Society of Chemical Industry  相似文献   

19.
Well‐defined poly(l ‐lactide‐b‐ethylene brassylate‐b‐l ‐lactide) (PLLA‐b‐PEB‐b‐PLLA) triblock copolymer was synthesized by using double hydroxyl‐terminated PEBs with different molecular weights. Gel permeation chromatography and NMR characterization were employed to confirm the structure and composition of the triblock copolymers. DSC, wide‐angle X‐ray diffraction, TGA and polarized optical microscopy were also employed to demonstrate the relationship between the composition and properties. According to the DSC curves, the cold crystallization peak vanished gradually with decrease of the PLLA block, illustrating that the relatively smaller content of PLLA may lead to the formation of a deficient PLLA type crystal, leading to a decrease of melting enthalpy and melting temperature. Multi‐step thermal decompositions were determined by TGA, and the PEB unit exhibited much better thermal stability than the PLLA unit. Polarized optical microscopy images of all the triblock samples showed that spherulites which develop radially and with an extinction pattern in the form of a Maltese cross exhibit no ring bond. The growth rate of the spherulites of all triblock samples was investigated. The crystallization capacity of PLLA improved with incorporation of PLLA, which accords with the DSC and wide‐angle X‐ray diffraction results. © 2019 Society of Chemical Industry  相似文献   

20.
In this article, we report the combined effects of poly(ethylene glycol) (PEG) and/or graphene oxides (GOs) on the crystallization behavior of poly(l ‐lactide) (PLLA) under different crystallization conditions, such as nonisothermal crystallization, isothermal crystallization, and annealing‐induced cold crystallization. Differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, and polarized optical microscopy were used to study the crystallization kinetics and crystallinity to illustrate the effects of PEG and/or GOs on the crystallization behavior of PLLA. The results show that PEG functioned as a plasticizer and improved the chain mobility of /PLLA during crystallization and the GOs acted as efficient nucleation agents and accelerated the crystallization rate. Finally, both PEG and GOs improved the crystallization ability of PLLA. Importantly, the simultaneous addition of PEG and GOs led to a synergistic effect on the crystallization behavior of PLLA under all conditions. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3498–3508, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号