首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A novel magnetic semi‐IPN hydrogel based on xylan and poly(acrylic acid) was prepared, and the prepared hydrogels had excellent thermal stability, magnetic‐, and pH‐ sensitive properties. The physical‐chemical properties of the prepared hydrogels depended on the contents of xylan and Fe3O4 nanoparticles. The thermal stability of the hydrogels enhanced as the contents of xylan and Fe3O4 nanoparticles increased; however, the equilibrium swelling ratio decreased with increasing the contents of Fe3O4 nanoparticles and xylan. The interconnected pore channels were formed in the hydrogels and the amount of the channels increased with an increase in xylan content. The prepared hydrogels had a super‐paramagnetic property, and the magnetization increased with an increase in the content of Fe3O4 nanoparticles. The superior characteristics of the xylan/PAAc magnetic semi‐IPN hydrogel would expand its applications in drug delivery and magnetic separation aspects. POLYM. COMPOS., 36:2317–2325, 2015. © 2014 Society of Plastics Engineers  相似文献   

2.
In this article, the multiple stimulus‐responsive organic/inorganic hybrid hydrogels by combining poly(2‐(2‐methoxyethoxy) ethyl methacrylate‐co‐oligo (ethylene glycol) methacrylate‐co‐acrylic acid) (PMOA) hydrogel with magnetic attapulgite/Fe3O4 (AT‐Fe3O4) nanoparticles were applied to the removal of Rhodamine B (RhB) dye from wastewater. The adsorption of RhB by the hydrogels was carried out under different external environmental, such as pH, temperature and magnetic‐field. The results showed that the hydrogels still possessed temperature, pH and magnetic‐field sensitivity during the adsorption process, which indicated that the adsorption could be controlled by the hydrogels responsive. The dye adsorption had a significant increment at 30°C and the removal of RhB could reach to over 95%. Besides, the low pH values were also favorable for the RhB adsorption, the removal was over 90% at pH = 4.56. Kinetic studies showed that the pseudo‐second order kinetic model well fitted the experimental data. The rate constant of adsorption was 0.0379 g/mg min. Langmuir and Freundlich isotherm models were applied to the equilibrium adsorption for describing the interaction between sorbent and adsorbate. The maximum KL and KF were 2.23 (L/g) and 0.87 (mg/g) at 30°C, respectively. Under the external magnetic‐field, the adsorption rate significantly increased within 250 min and the hydrogels could be separated easily from wastewater. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42244.  相似文献   

3.
A magnetic nanocomposite of citric‐acid‐functionalized graphene oxide was prepared by an easy method. First, citric acid (CA) was covalently attached to acyl‐chloride‐functionalized graphene oxide (GO). Then, Fe3O4 magnetic nanoparticles (MNPs) were chemically deposited onto the resulting adsorbent. CA, as a good stabilizer for MNPs, was covalently attached to the GO; thus MNPs were adsorbed much more strongly to this framework and subsequent leaching decreased and less agglomeration occurred. The attachment of CA onto GO and the formation of the hybrid were confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction spectrometry and transmission electron microscopy. The specific saturation magnetization of the magnetic CA‐grafted GO (GO‐CA‐Fe3O4) was 57.8 emu g?1 and the average size of the nanoparticles was found to be 25 nm by transmission electron microscopy. The magnetic nanocomposite was employed as an adsorbent of methylene blue from contaminated water. The adsorption tests demonstrated that it took only 30 min to attain equilibrium. The adsorption capacity in the concentration range studied was 112 mg g?1. The GO‐CA‐Fe3O4 nanocomposite was easily manipulated in an external magnetic field which eases the separation and leads to the removal of dyes. Thus the prepared nanocomposite has great potential in removing organic dyes. © 2014 Society of Chemical Industry  相似文献   

4.
Two different hydrogels, prepared from N‐vinyl‐2‐pyrrolidone/acrylic acid (NVP/AAc) and N‐vinyl‐2‐pyrrolidone/acrylamide (NVP/AAm), were studied for the separation and extraction of some heavy‐metal ions from wastewater. The hydrogels were prepared by the γ‐radiation‐induced copolymerization of the aforementioned binary monomer mixtures. Further modification was carried out for the NVP/AAc copolymer through an alkaline treatment to improve the swelling behavior by the conversion of the carboxylic acid groups into its sodium salts. The thermal stability and swelling properties were also investigated as functions of the N‐vinyl‐2‐pyrrolidone content. The characterization and some selected properties of the prepared hydrogels were studied, and the possibility of their practical use in wastewater treatment for heavy metals such as Cu, Ni, Co, and Cr was investigated. The maximum uptake for a given metal was higher for a treated NVP/AAc hydrogel than for an untreated NVP/AAc hydrogel and was higher for an untreated NVP/AAc hydrogel than for an NVP/AAm hydrogel. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2642–2652, 2004  相似文献   

5.
Removal of organic dyes from waste water has received a significant attention in recent years. In this work, a set of nanocomposite hydrogels (NHs) were prepared and their capacity to absorb crystal violet (CV), a cationic dye, and acid yellow‐23 (AY), an anionic dye, from aqueous solutions was determined. NHs were prepared by in situ formation of Fe3O4 magnetic nanoparticles (MNPs) inside poly(acrylamide‐co‐4‐styrene sulfonic acid sodium salt) (P[AAm‐co‐SSA]) hydrogel matrices. The dye absorption capacity of the magnetic NHs (MNHs) was compared with simple hydrogels (hydrogels or SHs) without the MNPs The prepared hydrogels were characterized by FTIR, XRD, thermogravimetric analysis, high resolution TEM, field emission SEM, and vibrating sample magnetometer measurement. From HRTEM, it was confirmed that the prepared MNPs in hydrogel matrices were in the size range of about 8 to 10 nm. The MNHs showed greater swelling behavior as well as greater removal efficiency of cationic dye from aqueous solutions in comparison to the SHs. With increase of SSA mole percentage, dye removal efficiency was also increased for both types of hydrogels. The present study indicates that the hydrogels containing MNPs can be potentially used as an efficient absorbent material for removal of cationic dyes from waste water. POLYM. ENG. SCI., 56:776–785, 2016. © 2016 Society of Plastics Engineers  相似文献   

6.
Pectin‐[(3‐acrylamidopropyl) trimethylammonium chloride‐co‐acrylic acid] hydrogel has been prepared from the aqueous blend solution of pectin, (3‐acrylamidopropyl) trimethylammonium chloride (APTAC), and acrylic acid (AAc) by applying gamma radiation of different doses (1–25 kGy) from 60Co gamma source. The hydrogels were characterized by equilibrium swelling, Fourier transform infrared, differential scanning calorimetry, and scanning electron microscopy. The hydrogels were used in multielement adsorption and it was found that pectin‐(APTAC‐co‐AAc) gel is highly selective toward silver (I) ion among 27 metal ions. The data obtained from equilibrium adsorption studies were fitted in Langmuir and Freundlich adsorption isotherm models and model parameters evaluated. The maximum adsorption capacity of pectin‐(APTAC‐co‐AAc) gel was found to be 67.6413 mg/g of dry gel at sample volume of 25 mL. The kinetic data were tested using pseudo‐first order and pseudo‐second order kinetic models and different adsorption diffusion models such as film diffusion and intra‐particle diffusivity model. Thiourea solution was used for desorption of adsorbed metal ions from the hydrogel. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45906.  相似文献   

7.
The present work involves the development of hydrogel magnetic nanocomposites for protein purification and heavy metal extraction applications. The magnetic nanoparticles (MNPs) were prepared in situ in poly(acrylamide)-gum acacia (PAM-GA) hydrogels. The formation of magnetic nanoparticles in the hydrogel networks was confirmed by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Scanning electron (SEM) microscopy studies revealed the formation of MNPs throughout the hydrogel networks. The average size of MNPs formed in the hydrogel networks was 3–5 nm as determined by transmission electron microscopy (TEM). The thermal properties of the hydrogel magnetic nanocomposites were evaluated by dynamic scanning calorimetry (DSC) and thermogravimetric (TG) analysis. The magnetic properties of the developed hydrogel magnetic nanocomposites were determined by a vibrating sample magnetometer (VSM). The swelling properties of the hydrogel and the hydrogel magnetic nanocomposites were studied in detail. The hydrogel magnetic nanocomposites are utilized for the removal of toxic metal ions such as Co(II), Ni(II), and Cu(II) and for protein purification. The results confirm that the hydrogel magnetic nanocomposites exhibit superior extraction properties to hydrogels.  相似文献   

8.
An amino‐functionalized nano‐adsorbent (DETA‐MNPs) was prepared by a process involving: (1) synthesis of superparamagnetic Fe3O4 nanoparticles; (2) introduction of amino groups after which ATRP initiator was anchored; (3) grafting of glycidyl methacrylate (GMA) via SI‐ATRP; and (4) ring‐opening reaction of epoxy groups with diethylenetriamine (DETA). The nano‐adsorbent was characterized by Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM) and applied to remove Cu(II) in batch experiments. The effects of pH, Cu(II) concentrations, solution ionic strength, and contact time were investigated. The results show that the DETA‐MNPs are spherical with cubic spine structure, high saturation magnetization (41.9 emu g?1), and an average diameter of 10 nm. The maximum Cu(II) adsorption capacity achieves 83.33 mg g?1 at pH 5.0 by Langmuir model. The adsorption process is highly pH‐dependent and reaches equilibrium within 20 min. Furthermore, the DETA‐MNPs exhibit excellent dispersibility and reusability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42859.  相似文献   

9.
A novel biodegradable magnetic‐sensitive shape memory poly(?‐caprolactone) nanocomposites, which were crosslinked with functionalized Fe3O4 magnetic nanoparticles (MNPs), were synthesized via in situ polymerization method. Fe3O4 MNPs pretreated with γ‐(methacryloyloxy) propyl trimethoxy silane (KH570) were used as crosslinking agents. Because of the crosslinking of functionalized Fe3O4 MNPs with poly(?‐caprolactone) prepolymer, the properties of the nanocomposites with different content of functionalized Fe3O4 MNPs, especially the mechanical properties, were significantly improved. The nanocomposites also showed excellent shape memory properties in both 60 °C hot water and alternating magnetic field (f = 60, 90 kHz, H = 38.7, 59.8 kA m?1). In hot water bath, all the samples had shape recovery rate (Rr) higher than 98% and shape fixed rate (Rf) nearly 100%. In alternating magnetic field, the Rr of composites was over 85% with the highest at 95.3%. In addition, the nanocomposites also have good biodegradability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45652.  相似文献   

10.
In this study, immobilization of laccase (L) enzyme on magnetite (Fe3O4) nanoparticles was achieved, so that the immobilized enzyme could be used repeatedly. For this purpose, Fe3O4 nanoparticles were coated and functionalized with chitosan (CS) and laccase from Trametes versicolor was immobilized onto chitosan‐coated magnetic nanoparticles (Fe3O4‐CS) by adsorption or covalent binding after activating the hydroxyl groups of chitosan with carbodiimide (EDAC) or cyanuric chloride (CC). For chitosan‐coated magnetic nanoparticles, the thickness of CS layer was estimated as 1.0–4.8 nm by TEM, isoelectric point was detected as 6.86 by zeta (ζ)‐potential measurements, and the saturation magnetization was determined as 25.2 emu g?1 by VSM, indicating that these nanoparticles were almost superparamagnetic. For free laccase and immobilized laccase systems, the optimum pH, temperature, and kinetic parameters were investigated; and the change of the activity against repeated use of the immobilized systems were examined. The results indicated that all immobilized systems retained more than 71% of their initial activity at the end of 30 batch uses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Acrylamide (AAm)/acrylic acid (AAc) hydrogels in the cylindirical form were prepared by γ‐irradiating binary systems of AAm/AAc with 2.6–20.0 kGy γ‐rays. The effect of the dose and relative amounts of AAc and pH on the swelling properties, diffusion behavior of water, diffusion coefficients, and network properties of hydrogel systems was investigated. The swelling capacities of AAm/AAc hydrogels were in the range of 1000–3000%, while poly(acrylamide) (PAAm) hydrogels swelled in the range of 450–700%. Water diffusion into hydrogels was found to be non‐Fickian‐type diffusion. Diffusion coefficients of AAm/AAc hydrogels were found between 0.79 × 10?5 and 2.78 × 10?5 cm2 min?1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3570–3580, 2002  相似文献   

12.
In this article, we report a facile strategy for preparing high‐mechanical‐strength ferrohydrogels containing magnetic nanoparticles homodispersed by a thermodynamically stable Pickering emulsion (PE). After the monomers were mixed with the PE, including methacryloxy propyl trimethoxyl silane emulsified by ferric oxide (Fe2O3) nanoparticles as the dispersed phase, hydrogels were synthesized by free‐radical polymerization. In contrast to conventional hydrogels crosslinked by a molecular crosslinker, in our new approach, the magnetic PE particles served as individual, multifunctional crosslinkers. Characterizations of the swelling behavior, the mechanical properties, and other properties indicated that our ferrohydrogels exhibited outstanding physical performances that were superior to those of traditional hydrogels and magnetic responsiveness. These ferrohydrogels may have applications in soft and controllable actuators. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41950.  相似文献   

13.
Four series of noble networks were synthesized with acrylic acid (AAc) copolymerized with varying amount of 2‐hydroxy propyl methacrylate or dodecyl methacrylate (AAc/HPMA or AAc/DMA; 5:1 to 5:5, w/w) in the presence of ethylene glycol dimethacrylate (EGDMA; 1, 5, 10, 15, and 20%, w/w) as a crosslinker and ammonium per sulfate (APS) as an initiator. Each of the networks was used to immobilize a purified lipase from Pseudomonas aeruginosa MTCC‐4713. The lipase was purified by successive salting out with (NH4)2SO4, dialysis, and DEAE anion exchange chromatography. Two of the matrices, E15a, i.e. [poly (AAc5co‐DMA1cl‐EGDMA15)] and I15c, i.e. [poly (AAc5co‐HPMA3cl‐EGDMA15)], that showed relatively higher binding efficiency for lipase were selected for further studies. I15c‐hydrogel retained 58.3% of its initial activity after 10th cycle of repetitive hydrolysis of p‐NPP, and I15c was thus catalytically more stable and efficient than the other matrix. The I15c‐hydrogel‐immobilized enzyme showed maximum activity at 65°C and pH 9.5. The hydrolytic activity of free and I15c‐hydrogel‐immobilized enzyme increased profoundly in the presence of 5 mM chloride salts of Hg2+, NH4+, Al3+, K+, and Fe3+. The immobilized lipase was preferentially active on medium chain length p‐nitrophenyl acyl ester (C:8, p‐nitrophenyl caprylate). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4636–4644, 2006  相似文献   

14.
High water sorption of 2‐vinyl pyridine (2‐VP)/acrylic acid (AAc) hydrogel were prepared by free‐radical polymerization in aqueous solution of 2‐VP with AAc as comonomer. The amount of ionic monomer (AAc), the irradiation dose of prepared hydrogel, the pH, and the concentration of drug play an important factor on loading, adsorption, and releasing of water‐soluble chloroamphenicol drug. As a result of dynamic swilling tests, the effect of relative content of AAc on the swelling showed that it allowed a non‐Fickian type of water diffusion. The adsorption of the drug onto (2‐VP/AAc) hydrogels was studied by Freundlish adsorption isotherm. The drug concentrations showed an influence on the adsorption of drug which increased with increasing AAc content. From Freundlish adsorption isotherm, the empirical constants, k and n, can be evaluated and showed the ability of hydrogel to be loaded by the drug and the affinity of the drug to be uptake onto the hydrogel respectively. FTIR, TGA, and SEM techniques were used to study the characterization of hydrogel (2‐VP/AAc). Additionally, the release of the drug loaded from hydrogel discs was studied microbiologically to show that hydrophilic structure of the hydrogel has an antimicrobial effect as a dehydration of cytoplasm and unbalance of the cell wall functions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
A stimuli‐responsive porous hydrogel was synthesized from wheat straw hemicellulose using CaCO3 as the porogen, and its application for the removal of methylene blue was studied. The porous structure of the prepared hydrogel was confirmed by SEM analysis. The effects of pH and polyelectrolyte on the swelling of the hydrogels were discussed, and the porous hydrogels showed excellent sensitivity to pH and salt. The deswelling kinetic study indicated that the hydrogels exhibited rapid shrinking in NaCl aqueous solutions. The methylene blue adsorption on the hydrogels was investigated, and the obtained adsorption data was fitted to the pseudo‐first‐order, pseudo‐second‐order and intra‐particle diffusion kinetics models, and the pseudo‐first‐order kinetic model could describe the adsorption process, and the adsorption process of methylene blue on the hydrogels was controlled by external film diffusion. This study reported that the hemicellulose‐based porous hydrogel is promising for water treatment. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41606.  相似文献   

16.
Magnetic and electrically responsive hydrogel networks were developed for drug‐delivery applications. The hydrogel matrices were synthesized by the polymerization of acrylamide monomer in the presence of carboxymethylcellulose (CMC) or methylcellulose (MC) with N,N‐methylenebisacrylamide, a crosslinker with the redox initiating system ammonium persulfate/tetramethylethylenediamine. The magnetic nanoparticles were generated throughout these hydrogel matrices by an in situ method by the incorporation of iron ions and their subsequent reduction with ammonia. A series of hydrogel–magnetic nanocomposites (HGMNCs) were developed with various CMC and MC compositions. The synthesized HGMNCs were characterized with spectral (Fourier transform infrared and ultraviolet–visible spectroscopy), X‐ray diffraction, thermal, and microscopy methods. These HGMNCs contained iron oxide (Fe3O4) nanoparticles with an average particle size of about 22 nm, as observed by transmission electron microscopy. The dielectrical properties of the pure hydrogel (HG); the hydrogel loaded with iron ions, or the hydrogel iron‐ion composite (HGIC); and the HGMNCs were measured. These results suggest that HGMNCs exhibited higher dielectric constants compared to HG and HGICs. The curcumin loading and release characteristics were also measured for HG, HGIC, and HGMNC systems. These data revealed that there was a sustained release of curcumin from HGMNCs because of the presence of magnetic nanoparticles in the hydrogel networks. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
In recent years, the smart hydrogels have gained much concern in the field of research specially related to flexible strain sensors because they exhibit many types of smart interactions that can be useful in wearable devices. However, the conventional hydrogels have poor electrical conductivity that affect the performance of the sensors, so it remains a challenge to achieve noncontact signal monitoring (e.g., for the detection of magnetic field changes). In this study, an ultra-stretchable and magnetically responsive conductive hydrogel was fabricated by adding magnetic ferric tetroxide@polypyrrole composite nanoparticles (Fe3O4@PPy NPs) to polyacrylamide (PAm). The nanoparticles were easily agglomerated and improved the compatibility of PPy and hydrogel. The obtained PAm/Fe3O4@PPy hydrogel showed an ultra-stretchability of (961%), a low elastic modulus of (87.8 kPa), and an excellent toughness of (1010.5 kJ m−3). Moreover, PAm/Fe3O4@PPy hydrogel also exhibited a high electrical conductivity of 0.34 S m−1, and the PAm/Fe3O4@PPy hydrogel sensor could detect human motions (such as bending of finger, bending of wrist) and muscle micromotion (such as pronouncing). In addition, it can also monitor the change in magnitude of magnetic field.  相似文献   

18.
《Ceramics International》2016,42(3):4228-4237
L-cysteine functionalized Fe3O4 magnetic nanoparticles (Cys–Fe3O4 MNPs) were continuously fabricated by a simple high-gravity reactive precipitation method combined with surface modification through a novel impinging stream-rotating packed bed with the assistance of sonication. The obtained Cys–Fe3O4 MNPs was characterized by XRD, TEM, FTIR, TGA and VSM, and further used for the removal of heavy metal ions from aqueous solution. The influence of pH values, contact time and initial metal concentration on the adsorption efficiency were investigated. The results revealed that the adsorption of Pb(II) and Cd(II) were pH dependent process, and the pH 6.0 was found to be optimum condition. Moreover, the adsorption kinetic for Cys–Fe3O4 MNPs followed the mechanism of the pseudo-second order kinetic model, and their equilibrium data were fitted with the Langmuir isothermal model well. The maximum adsorption capacities calculated from Langmuir equation were 183.5 and 64.35 mg g−1 for Pb(II) and Cd(II) at pH 6.0, respectively. Furthermore, the adsorption and regeneration experiment showed there was about 10% loss in the adsorption capacity of the as-prepared Cys–Fe3O4 MNPs for heavy metal ions after 5 times reuse. All the above results provided a potential method for continuously preparing recyclable adsorbent applied in removing toxic metal ions from wastewater through the technology of process intensification.  相似文献   

19.
In this article, thermosensitive poly(N‐isopropyl acrylamide‐co‐vinyl pyrrolidone)/chitosan [P(NIPAM‐co‐NVP)/CS] semi‐interpenetrating (semi‐IPN) hydrogels were prepared by redox‐polymerization using N,N‐methylenebisacrylamide as crosslinker and ammonium persulfate/N,N,N′,N′‐tetramethylethylenediamine as initiator. Highly stable and uniformly distributed Ag nanoparticles were prepared by using the semihydrogel networks as templates via in situ reduction of silver nitrate in the presence of sodium borohydride as a reducing agent. Introduction of CS improves the hydrogels swelling ratio (SR) and stabilizes the formed Ag nanoparticles in networks. Scanning electron microscopy and transmission electron microscopy revealed that Ag nanoparticles were well dispersed with diameters of 10 nm. The semi‐IPN hydrogel/Ag composites had higher SR and thermal stability than its corresponding semi‐IPN hydrogels. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Removal of dyes from the industrial discharge water is an important issue for safety of the environment. In this study, magnetic (magnetite, Fe3O4) nanoparticles were coated with chitosan (CS) and the efficiency of these chitosan coated magnetic nanoparticles (Fe3O4‐CS) for the adsorption of a reactive textile dye (Reactive Yellow 145, RY145) was examined first time in literature. TEM, XRD, and EPR results revealed that the thickness of the coat was about 2–5 nm, no phase change in the spinel structure of magnetic particles existed after coating, and particles had paramagnetic property, respectively. Adsorption of RY145 on Fe3O4‐CS nanoparticles occurs according to Langmuir model in the temperature range 25°C–45°C with a maximum adsorption capacity of 47.62 mg g?1 at 25°C, in aqueous media. Thermodynamic parameters demonstrated that the adsorption process was endothermic and spontaneous, and the maximum desorption of the dye was 80% over a single adsorption/desorption cycle. In this study, the high efficiency of the CS coated magnetic nanoparticles in the adsorption and removal of reactive dyes from water was shown on model RY145. This type of nanoparticles can be good candidates in industrial applications for the decolorization of waste waters. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号