首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the corrosion behavior of yttrium-implanted zircaloy-4   总被引:2,自引:0,他引:2  
In order to study the effects of yttrium ion implantation on the aqueous corrosion behavior of zircaloy-4, specimens were implanted with yttrium ions using a MEVVA source at an energy of 40 keV, with a dose range from 1 × 1016 to 1 × 1017 ions/cm2 at about 150°C. Transmission electron microscopy (TEM) was used to obtain the structural character of the yttrium-implanted zircaloy-4. The valence of the yttrium ions in the surface layer was analyzed by X-ray photoemission spectroscopy (XPS). Three-sweep potentiodynamic polarization measurement was employed to evaluate the aqueous corrosion behavior of zircaloy-4 in a 1 N H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-4 compared with that of the as-received zircaloy-4. The mechanism of the corrosion resistance improvement of the yttrium-implanted zircaloy-4 is probably due to the addition of the yttrium oxide dispersoid into the zirconium matrix.  相似文献   

2.
D.Q. Peng  X.D. Bai  F. Pan 《Vacuum》2006,81(4):507-516
In order to simulate the irradiation damage, argon ions were implanted into zircalloy-2 alloy with a fluence ranging from 1×1016 to 1×1017 ions/cm2, using an implanter at an extraction voltage of 190 kV, at liquid nitrogen temperature. Then the effect of argon ion implantation on the aqueous corrosion behavior of zircalloy-2 alloy was studied. The valence states of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) was used to examine the microstructure of the argon-implanted samples. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the argon ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircalloy-2 alloy in a 1 M H2SO4 solution. It was found that the bubbles were formed on the surface of implanted samples; the bubbles grew larger with increasing argon fluence. The microstructure of argon-implanted samples changed from amorphous to partial amorphous, then to polycrystalline and finally to amorphous. The bubble forming and changing and microstructure changes affected the corrosion properties of implanted samples. Finally, the mechanism of the corrosion behavior of argon-implanted zircalloy-2 alloy is discussed.  相似文献   

3.
《Materials Letters》2005,59(19-20):2496-2503
In order to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zirconium, specimens were implanted with aluminum ions with fluence ranging from 1 × 1016 to 1 × 1017 ions/cm2, using a metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES), respectively. Transmission electron microscopy (TEM) was used to examine the microstructure of the aluminum-implanted samples. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the aluminum ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zirconium in a 1 M H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zirconium implanted with aluminum ions. Finally, the mechanism of the corrosion behavior of aluminum-implanted zirconium was discussed.  相似文献   

4.
In order to study the effects of zirconium and molybdenum ion bombardment on the aqueous corrosion behavior of zirconium, one group of specimens was implanted with zirconium ions with ions surface densities ranging from 1 × 1015 to 2 × 1017 ions/cm2 at about 170 °C, using a metal vapor vacuum arc (MEVVA) source operated at an extraction voltage of 50 kV. The other group of specimens was bombarded with molybdenum ion with ions surface densities ranging from 1 × 1016 to 5 × 1017 ions/cm2 at about 160 °C, using a MEVVA source operated at an extraction voltage of 40 kV. The valence states and depth distribution of elements in the surface of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Polarization curves measurement was employed to evaluate the aqueous corrosion resistance of the zirconium samples in a 1N H2SO4 solution. It was found that the aqueous corrosion resistance of zirconium implanted with 5 × 1016 Zr ions/cm2 is the best in first group samples. For molybdenum ion implantation, the aqueous corrosion resistance of samples declined with raising ions surface densities. The natural corrosion potentials of zirconium samples bombarded with self-ions are more negative than that of the as-received zirconium. While, as for molybdenum ion implantation, the results are opposite. Finally, the mechanisms of the corrosion behavior of the zirconium samples implanted with zirconium and molybdenum ions are discussed.  相似文献   

5.
In order to study the effects of the lanthanum ion implantation on the aqueous corrosion behavior of zircaloy, specimens were implanted with lanthanum ions using a MEVVA source at an energy of 40 keV, with a dose range from 5 × 1016 to 2 × 1017 ions/cm2 at about 150°C. The surface structure was investigated by X-ray Diffraction (XRD) and the valence of the lanthanum ions in the surface layer was analyzed by X-ray Photoemission Spectroscopy (XPS). Three-sweep potentiodynamic polarization measurement was employed to evaluate the aqueous corrosion behavior of zircaloy in a 0.5 M H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy compared with that of the as-received zircaloy. The mechanism of the corrosion resistance improvement of the lanthanum-implanted zircaloy is probably due to the addition of the lanthanum oxide dispersoid into the zircaloy matrix.Financed by Institute of Low Energy Nuclear Physics, Radition Beam and Materials Laboratory, Beijing Normal University  相似文献   

6.
Y.Z. Liu  X.T. Zu  S.Y. Qiu  C.X. Li  C.F. Wei 《Vacuum》2006,81(1):71-76
In the present investigation, polished samples were implanted with nitrogen ion at an energy of 60 keV and implantation doses were 1×1016, 5×1016, 1×1017 and 6×1017 ions/cm2. Glancing incidence X-ray diffraction was employed on the implanted specimens to understand the phases formed with increasing dose. The valence states of nitrogen, titanium and carbon on the sample surfaces were analyzed by X-ray photoemission spectroscopy. The corrosion resistance was examined by the electrochemical methods in a solution with pH=10 at room temperature in order to determine the optimum dose that can give good corrosion resistance in a simulated nuclear reactor condition. Scanning electron microscopy was used to observe the topographies of nitrogen-implanted Ti-Al-Zr after potentiodynamic measurement. It was found that implanted nitrogen dissolved in titanium matrix with increasing dose and the resultant nitrides such as TiN and Ti2N precipitated. Implantation of nitrogen ions into the surface of Ti-Al-V alloy improves its corrosion resistance, and the increase of the corrosion resistance depends on the nitrogen dose employed; the maximum improvement of the corrosion resistance was observed at a dose of 1×1017 N+/cm2.  相似文献   

7.
AZ31 samples were implanted with 90 keV cerium ions with a dose of 1 × 1017 ions/cm2. Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and Glancing angle X-ray diffraction (GAXRD) were used in order to investigate the characterization of elements in the implanted surface. The results indicate that after cerium implantation a pre-oxidation layer with double structure was formed. The influence of cerium implantation on the cyclic oxidation behaviour of AZ31 samples was studied at 773 K in air for 96 h, and the morphologies of the oxide scales were examined by scanning electron microscopy (SEM). It was found that the oxidation resistance of the implanted sample has been improved. The mechanisms to explain the experimental results were also proposed.  相似文献   

8.
In order to study the effect of krypton ion irradiation on the aqueous corrosion behavior of laser beam welded zircaloy-4 (LBWZr4), the butt weld joint of zircaloy-4 was made by means of a carbon dioxide laser, subsequently the LBWZr4 samples were irradiated with Kr ions using an accelerator at an energy of 300 keV, with a dose range from 1 × 1015 to 3 × 1016 ions/cm2 at about 150 °C. Three-sweep potentiodynamic polarization measurement was employed to evaluate the aqueous corrosion behavior of Kr-irradiated LBWZr4 in a 0.5 M H2SO4 solution. Scanning electron microscopy (SEM) was used to examine the surface topography of the Kr-irradiated LBWZr4 after the potentiodynamic polarization measurement. Transmission electron microscopy was employed to examine the change of microstructures in the irradiated surface. The polarization tests showed that compared with the passive current density of the as-received LBWZr4, the Kr-irradiated LBWZr4 is much lower; however, with the irradiation dose increasing from 1 × 1015 to 3 × 1016 ions/cm2, the passive current density, closely related to the surface corrosion resistance, increased remarkably. The mechanism of the corrosion behavior transformation was due to the recrystallization of the amorphous phase induced by the lower ion irradiation.  相似文献   

9.
D.Q. Peng  X.D. Bai  H. Sun 《Vacuum》2006,80(6):530-536
The beneficial effect of aluminum ion implantation on the oxidation behavior of ZIRLO alloy at 500 °C has been studied. ZIRLO alloy specimens were implanted with aluminum ions with fluence range from 1×1016 to 1×1018 ion/cm2, using a MEVVA source at an extraction voltage of 40 kV at maximum temperature of 380 °C. The weight gain curves were measured after being oxidized in the air at 500 °C for 120 min, which showed that a significant improvement was achieved in the oxidation behavior of ZIRLO alloy implanted with aluminum compared with that of the virgin ZIRLO alloy. It has been obviously found that when the fluence is 1×1018 ion/cm2, the oxidization of the implanted ZIRLO alloy is reduced into 30% of the virgin ZIRLO alloy.  相似文献   

10.
We report, for the first time to our knowledge, the formation of single mode planar waveguide in z-cut YVO4 by 400 keV, 500 keV He ion implantation in fluence of 3 × 1016 ions/cm2 at room temperature or at liquid nitrogen temperature (77 K). We investigated annealing behavior of the guiding mode and near-field image in the waveguide by prism-coupling method and end-face coupling method respectively. We found that the effective refractive index of the TE0 mode was different before and after annealing for the samples implanted at room temperature, while, annealing had nearly no influence on the effective refractive index of the TE0 mode of the samples implanted at liquid nitrogen temperature (77 K). After annealing at 600 K for 1 h, no guiding mode was observed in the sample implanted by 400 keV He ion in fluence of 3 × 1016 ions/cm2 at room temperature. The Rutherford backscattering/channeling technique was used to investigate the damage reduction after annealing treatments. The minimum yield of the implanted, annealed sample was 5.43%. We reconstructed the refractive index profiles in the waveguide under different condition by applying intensity calculation method.  相似文献   

11.
M.S. Rafique 《Vacuum》2007,81(9):1062-1067
Commercially graded SiC samples were implanted with 250 keV germanium ions (Ge+) at room temperature. For Ge+ ions source, laser-induced plasma (LIP) technique was used. Ge+ implantation was confirmed by energy dispersive X-ray (EDX) analysis. Change in FWHM and lattice constant of SiC samples has been observed after the Ge implantation, calculated by Bragg's law from XRD analysis. A comparison of the electrical and optical properties of SiC before and after Ge+ implantation (SiC:Ge) has also been made. Electrical diagnostic comprises of a four-probe method for the measurement of resistivity whereas Raman spectroscopy is employed for the optical investigation. Resistivity measurements of SiC and SiC:Ge samples showed that resistivity decreases as Ge+ implantation increases. Raman spectroscopy of the SiC and SiC:Ge showed that Raman band became broadened and is shifted towards the lower wave number with the increase in Ge ion fluence. The increase in Ge ions fluence enhances the lattice defects which are responsible for broadening in XRD and Raman peaks as well as increase in conductivity of the samples.  相似文献   

12.
The AISI 316L stainless steel has been widely used both in artificial knee and hip joints in bio-medical applications. In the present study AISI 316L SS was implanted with two different ions: nitrogen and helium at 100 keV with a dose of 1 × 1017 ions/cm2 at room temperature. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD) and scanning electron microscope (SEM). The effects of ion implantation on the corrosion performance of AISI 316L stainless steel was evaluated in 0.9% NaCl solution using electro chemical test both on the virgin and implanted samples. The subsequent Tafel analysis shows that the ion implanted specimens were more corrosion resistant when compared to the bare specimens. Microhardness was also measured by Vickers method by varying the loads. The results of the studies indicated that there was a significant improvement in both corrosion resistance and hardness of implanted samples.  相似文献   

13.
A novel phase has been discovered by dual low-energy ion implantation and high vacuum electron beam annealing. (100) p-type Si was implanted with (a) 20 keV 12C+ ions to the fluence of 6 × 1016 cm−2 and (b) 7 keV Pb+ ions to the fluence of 4 × 1015 cm−2. The 12C ion implantation results in an understoichiometric shallow SiCx layer that intersects with the surface. The implanted Pb ions decorate a shallow subsurface region. High vacuum electron beam annealing at 1000 °C for 15 s using a temperature gradient of 5 °C s−1 leads to the formation of large SiC nanocrystals on the surface with RBS measurements showing Pb has diffused into the deeper region affected by the 12C implantation. In this region, a new crystalline phase has been discovered by XRD measurements.  相似文献   

14.
Wear resistance of TiN coatings implanted with Al and N ions   总被引:1,自引:0,他引:1  
Jerzy Narojczyk  Dmitrij Morozow 《Vacuum》2007,81(10):1275-1277
Titanium nitride (TiN) coatings were prepared on HS 6-5-2 high-speed steel cutting inserts and next implanted either with Al ions (fluence 2×1017 ions/cm2) or with Al and N ions (fluence (1+1)×1017 ions/cm2) on the rake face. Microhardness and friction coefficient of the implanted surfaces were examined. A noticeable increase of microhardness in Al implanted inserts has been observed.The elemental composition and structural properties of the surface layer were examined by glow discharge optical emission spectroscopy (GDOES) and gliding angle X-ray diffraction (XRD).The tests of turning of 40 H constructional steel with the cutting inserts have shown an improvement in the implanted inserts, especially marked in those implanted with Al+N.  相似文献   

15.
This paper is concerned with the surface modification of a cobalt alloy (Endocast) by sodium-ion implantation and with the effect of this modification on its corrosion resistance. The Na ions were implanted at doses of 1×1017 and 2×1017 ions/cm2 at energy of 25 keV. The chemical composition of the surface layers formed during the implantation was examined by secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS), and their microstructure by transmission electron microscopy (TEM). The corrosion resistance was determined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 °C. Prior to the measurements, the samples were exposed to the test conditions for 13 h to allow the corrosion potential Ecorr to stabilize, and for 181, 733 and 2200 h to investigate how the long-time exposures affect the corrosion resistance. The surfaces of the samples were examined by optical microscopy and by SEM-EDS. The TEM results indicate that the surface layers formed during the Na-implantation are amorphous. The results of the electrochemical examinations obtained for the Na-implanted Endocast samples indicate that the corrosion resistance of the alloy is reduced.  相似文献   

16.
X.Y. Zhang  Q. Wan  Z.X. Jin 《Vacuum》2006,80(9):1003-1006
The beneficial effect of titanium ion implantation on the oxidation behaviour of zircalloy-4 at 500 °C was investigated. Titanium ions were implanted by a MEVVA source at an energy of 40 keV with dose 5×1016, 1×1017, and 2×1017 ion/cm2 at the maximum temperature 130 °C. Weight gain curves of the as-received and implanted zircalloy-4 were measured after oxidation in air at 500 °C for 100 min. It was found that improvement was achieved in the oxidation behaviour of titanium ion implanted samples compared with that of the as-received one. The valence of the oxides in the scale was analyzed by X-ray photoemission spectroscopy. Glancing angle X-ray diffraction was used to examine the phase transformation in the oxide films and is showed that the addition of titanium transformed the phase from monoclinic zirconia to hexagonal zirconia. Finally, the mechanism of improvements oxidation behaviour is discussed.  相似文献   

17.
Surface recession due to sputtering under low-energy and high-fluence heavy-ion implantation makes shallower and broader depth profile of implanted ions than those calculated by conventional ion-range simulation-codes such as SRIM. Depth profiles of Zn atoms in silica glasses (SiO2) implanted with Zn+ ions of 60 keV up to 1.0×1017 ions/cm2 were evaluated using both experimental methods as Rutherford backscattering spectrometry (RBS), sputtering depth-profiling by X-ray photoelectron spectroscopy (XPS), and an advanced numerical simulation code TRIDYN, which includes the sputtering loss effects. The TRIDYN code predicts the shallowing of the projectile range from ∼46 to ∼27 nm with increasing the fluence up to 1×1017 ions/cm2, and very high-concentration (∼20 at%) of Zn atoms close to the surface. However, RBS and XPS results exclude such high concentration close to the surface. These results suggest remarkable redistribution of Zn atoms from the nearer surface to the deeper region during the implantation. In fact, Zn-atom concentration near the surface and that near the projectile range are, respectively, lower and higher than those by the SRIM code predictions.  相似文献   

18.
Ion implantation-induced nanoclusters were synthesized in reactive sputtered Ta2O5 films by Ge+ implantation and subsequent annealing. The effects of ion fluence and post-implantation thermal treatment on the kinetics of the nanoclustering were investigated. Ge+ ions with energy of 40 keV and fluences of 5 × 1015, 1 × 1016 and 5 × 1016 cm 2 were implanted in the Ta2O5 layers at room temperature. The samples were thermally treated by rapid thermal annealing in vacuum at 700 °C and 1000 °C for 30, 60 and 180 s. Structural studies of all samples were done by Cross-sectional Transmission Electron Microscopy in diffraction and phase contrast mode. Under optimized conditions (high implantation fluence, subsequent annealing) nanoclusters are formed around the projected ion range of the implanted Ge+ ions. The structure of the implanted Ta2O5 matrix changes from amorphous to orthorhombic when the annealing was performed at 1000 °C. Although the Ta2O5 matrix crystallizes, no evidence is obtained for crystallization of the embedded nanoclusters even after annealing at 1000 °C.  相似文献   

19.
The effect of grain size reduction on the electrochemical and corrosion behavior of iron with different grain sizes (32–750 nm) produced by direct and pulsed current electrodeposition were characterized using Tafel polarization curves and electrochemical impedance spectroscopy. The grain size of deposits was determined by X-ray diffraction analysis and scanning electron microscopy. The tests were carried out in an aqueous electrolyte containing 30 mg L−1 NaCl + 70 mg L−1 Na2SO4. Results obtained suggested that the inhibition effect and corrosion protection of sodium benzoate inhibitor in near-neutral aqueous solutions increased as the grain size decreased from microcrystalline to nanocrystalline. The improvement on the inhibition effect is attributed to the increase of the surface energy.  相似文献   

20.
《Materials Letters》2007,61(19-20):4083-4085
A Si5C3 type silicon carbon has been prepared via carbon ion implantation into silicon substrate using a MEVVA ion source. Carbon ions were implanted into silicon substrate at a fluence of 5 × 1017 ions/cm2 and then the as-implanted samples were annealed at 1250 °C for 2 h. The thermal annealing produced a silicon carbide layer on the surface of silicon substrate. The results of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirm the existence of Si5C3, rather than SiC. The results of Fourier transform infrared reflection (FTIR) and Raman spectroscopy analyses show that the Si–C vibration frequency in crystalline Si5C3 is slightly less than that in crystalline β-SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号