首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A robust classification procedure is developed based on ensembles of classifiers, with each classifier constructed from a different set of predictors determined by a random partition of the entire set of predictors. The proposed methods combine the results of multiple classifiers to achieve a substantially improved prediction compared to the optimal single classifier. This approach is designed specifically for high-dimensional data sets for which a classifier is sought. By combining classifiers built from each subspace of the predictors, the proposed methods achieve a computational advantage in tackling the growing problem of dimensionality. For each subspace of the predictors, we build a classification tree or logistic regression tree. Our study shows, using four real data sets from different areas, that our methods perform consistently well compared to widely used classification methods. For unbalanced data, our approach maintains the balance between sensitivity and specificity more adequately than many other classification methods considered in this study.  相似文献   

2.
Classification of high-dimensional statistical data is usually not amenable to standard pattern recognition techniques because of an underlying small sample size problem. To address the problem of high-dimensional data classification in the face of a limited number of samples, a novel principal component analysis (PCA) based feature extraction/classification scheme is proposed. The proposed method yields a piecewise linear feature subspace and is particularly well-suited to difficult recognition problems where achievable classification rates are intrinsically low. Such problems are often encountered in cases where classes are highly overlapped, or in cases where a prominent curvature in data renders a projection onto a single linear subspace inadequate. The proposed feature extraction/classification method uses class-dependent PCA in conjunction with linear discriminant feature extraction and performs well on a variety of real-world datasets, ranging from digit recognition to classification of high-dimensional bioinformatics and brain imaging data.  相似文献   

3.
由于高维数据通常存在冗余和噪声,在其上直接构造覆盖模型不能充分反映数据的分布信息,导致分类器性能下降.为此提出一种基于精简随机子空间多树集成分类方法.该方法首先生成多个随机子空间,并在每个子空间上构造独立的最小生成树覆盖模型.其次对每个子空间上构造的分类模型进行精简处理,通过一个评估准则(AUC值),对生成的一类分类器进行精简.最后均值合并融合这些分类器为一个集成分类器.实验结果表明,与其它直接覆盖分类模型和bagging算法相比,多树集成覆盖分类器具有更高的分类正确率.  相似文献   

4.
It is well known that the applicability of independent component analysis (ICA) to high-dimensional pattern recognition tasks such as face recognition often suffers from two problems. One is the small sample size problem. The other is the choice of basis functions (or independent components). Both problems make ICA classifier unstable and biased. In this paper, we propose an enhanced ICA algorithm by ensemble learning approach, named as random independent subspace (RIS), to deal with the two problems. Firstly, we use the random resampling technique to generate some low dimensional feature subspaces, and one classifier is constructed in each feature subspace. Then these classifiers are combined into an ensemble classifier using a final decision rule. Extensive experimentations performed on the FERET database suggest that the proposed method can improve the performance of ICA classifier.  相似文献   

5.
半监督学习过程中,由于无标记样本的随机选择造成分类器性能降低及不稳定性的情况经常发生;同时,面对仅包含少量有标记样本的高维数据的分类问题,传统的半监督学习算法效果不是很理想.为了解决这些问题,本文从探索数据样本空间和特征空间两个角度出发,提出一种结合随机子空间技术和集成技术的安全半监督学习算法(A safe semi-supervised learning algorithm combining stochastic subspace technology and ensemble technology,S3LSE),处理仅包含极少量有标记样本的高维数据分类问题.首先,S3LSE采用随机子空间技术将高维数据集分解为B个特征子集,并根据样本间的隐含信息对每个特征子集优化,形成B个最优特征子集;接着,将每个最优特征子集抽样形成G个样本子集,在每个样本子集中使用安全的样本标记方法扩充有标记样本,生成G个分类器,并对G个分类器进行集成;然后,对B个最优特征子集生成的B个集成分类器再次进行集成,实现高维数据的分类.最后,使用高维数据集模拟半监督学习过程进行实验,实验结果表明S3LSE具有较好的性能.  相似文献   

6.
Linear discriminant analysis (LDA) has been widely used for dimension reduction of data sets with multiple classes. The LDA has been recently extended to various generalized LDA methods that are applicable regardless of the relative sizes between the data dimension and the number of data items. In this paper, we propose several multiclass classifiers based on generalized LDA (GLDA) algorithms, taking advantage of the dimension reducing transformation matrix without requiring additional training or parameter optimization. A marginal linear discriminant classifier (MLDC), a Bayesian linear discriminant classifier (BLDC), and a one-dimensional BLDC are introduced for multiclass classification. Our experimental results illustrate that these classifiers produce higher ten-fold cross validation accuracy than kNN and centroid-based classifiers in the reduced dimensional space obtained from GLDA.  相似文献   

7.
Incremental construction of classifier and discriminant ensembles   总被引:2,自引:0,他引:2  
We discuss approaches to incrementally construct an ensemble. The first constructs an ensemble of classifiers choosing a subset from a larger set, and the second constructs an ensemble of discriminants, where a classifier is used for some classes only. We investigate criteria including accuracy, significant improvement, diversity, correlation, and the role of search direction. For discriminant ensembles, we test subset selection and trees. Fusion is by voting or by a linear model. Using 14 classifiers on 38 data sets, incremental search finds small, accurate ensembles in polynomial time. The discriminant ensemble uses a subset of discriminants and is simpler, interpretable, and accurate. We see that an incremental ensemble has higher accuracy than bagging and random subspace method; and it has a comparable accuracy to AdaBoost, but fewer classifiers.  相似文献   

8.
A simple and fast multi-class piecewise linear classifier is proposed and implemented. For a pair of classes, the piecewise linear boundary is a collection of segments of hyperplanes created as perpendicular bisectors of line segments linking centroids of the classes or parts of classes. For a multi-class problem, a binary partition tree is initially created which represents a hierarchical division of given pattern classes into groups, with each non-leaf node corresponding to some group. After that, a piecewise linear boundary is constructed for each non-leaf node of the partition tree as for a two-class problem. The resulting piecewise linear boundary is a set of boundaries corresponding to all non-leaf nodes of the tree. The basic data structures of algorithms of synthesis of a piecewise linear classifier and classification of unknown patterns are described. The proposed classifier is compared with a number of known pattern classifiers by benchmarking with the use of real-world data sets.  相似文献   

9.
We propose two new comprehensive schemes for designing prototype-based classifiers. The scheme addresses all major issues (number of prototypes, generation of prototypes, and utilization of the prototypes) involved in the design of a prototype-based classifier. First we use Kohonen's self-organizing feature map (SOFM) algorithm to produce a minimum number (equal to the number of classes) of initial prototypes. Then we use a dynamic prototype generation and tuning algorithm (DYNAGEN) involving merging, splitting, deleting, and retraining of the prototypes to generate an adequate number of useful prototypes. These prototypes are used to design a "1 nearest multiple prototype (1-NMP)" classifier. Though the classifier performs quite well, it cannot reasonably deal with large variation of variance among the data from different classes. To overcome this deficiency we design a "1 most similar prototype (1-MSP)" classifier. We use the prototypes generated by the SOFM-based DYNAGEN algorithm and associate with each of them a zone of influence. A norm (Euclidean)-induced similarity measure is used for this. The prototypes and their zones of influence are fine-tuned by minimizing an error function. Both classifiers are trained and tested using several data sets, and a consistent improvement in performance of the latter over the former has been observed. We also compared our classifiers with some benchmark results available in the literature.  相似文献   

10.
A self-organizing HCMAC neural-network classifier   总被引:3,自引:0,他引:3  
This paper presents a self-organizing hierarchical cerebellar model arithmetic computer (HCMAC) neural-network classifier, which contains a self-organizing input space module and an HCMAC neural network. The conventional CMAC can be viewed as a basis function network (BFN) with supervised learning, and performs well in terms of its fast learning speed and local generalization capability for approximating nonlinear functions. However, the conventional CMAC has an enormous memory requirement for resolving high-dimensional classification problems, and its performance heavily depends on the approach of input space quantization. To solve these problems, this paper presents a novel supervised HCMAC neural network capable of resolving high-dimensional classification problems well. Also, in order to reduce what is often trial-and-error parameter searching for constructing memory allocation automatically, proposed herein is a self-organizing input space module that uses Shannon's entropy measure and the golden-section search method to appropriately determine the input space quantization according to the various distributions of training data sets. Experimental results indicate that the self-organizing HCMAC indeed has a fast learning ability and low memory requirement. It is a better performing network than the conventional CMAC for resolving high-dimensional classification problems. Furthermore, the self-organizing HCMAC classifier has a better classification ability than other compared classifiers.  相似文献   

11.
Bagging, Boosting and the Random Subspace Method for Linear Classifiers   总被引:6,自引:0,他引:6  
Recently bagging, boosting and the random subspace method have become popular combining techniques for improving weak classifiers. These techniques are designed for, and usually applied to, decision trees. In this paper, in contrast to a common opinion, we demonstrate that they may also be useful in linear discriminant analysis. Simulation studies, carried out for several artificial and real data sets, show that the performance of the combining techniques is strongly affected by the small sample size properties of the base classifier: boosting is useful for large training sample sizes, while bagging and the random subspace method are useful for critical training sample sizes. Finally, a table describing the possible usefulness of the combining techniques for linear classifiers is presented. Received: 03 November 2000, Received in revised form: 02 November 2001, Accepted: 13 December 2001  相似文献   

12.
Most existing semi-supervised clustering algorithms are not designed for handling high-dimensional data. On the other hand, semi-supervised dimensionality reduction methods may not necessarily improve the clustering performance, due to the fact that the inherent relationship between subspace selection and clustering is ignored. In order to mitigate the above problems, we present a semi-supervised clustering algorithm using adaptive distance metric learning (SCADM) which performs semi-supervised clustering and distance metric learning simultaneously. SCADM applies the clustering results to learn a distance metric and then projects the data onto a low-dimensional space where the separability of the data is maximized. Experimental results on real-world data sets show that the proposed method can effectively deal with high-dimensional data and provides an appealing clustering performance.  相似文献   

13.
《Information Fusion》2003,4(2):87-100
A popular method for creating an accurate classifier from a set of training data is to build several classifiers, and then to combine their predictions. The ensembles of simple Bayesian classifiers have traditionally not been a focus of research. One way to generate an ensemble of accurate and diverse simple Bayesian classifiers is to use different feature subsets generated with the random subspace method. In this case, the ensemble consists of multiple classifiers constructed by randomly selecting feature subsets, that is, classifiers constructed in randomly chosen subspaces. In this paper, we present an algorithm for building ensembles of simple Bayesian classifiers in random subspaces. The EFS_SBC algorithm includes a hill-climbing-based refinement cycle, which tries to improve the accuracy and diversity of the base classifiers built on random feature subsets. We conduct a number of experiments on a collection of 21 real-world and synthetic data sets, comparing the EFS_SBC ensembles with the single simple Bayes, and with the boosted simple Bayes. In many cases the EFS_SBC ensembles have higher accuracy than the single simple Bayesian classifier, and than the boosted Bayesian ensemble. We find that the ensembles produced focusing on diversity have lower generalization error, and that the degree of importance of diversity in building the ensembles is different for different data sets. We propose several methods for the integration of simple Bayesian classifiers in the ensembles. In a number of cases the techniques for dynamic integration of classifiers have significantly better classification accuracy than their simple static analogues. We suggest that a reason for that is that the dynamic integration better utilizes the ensemble coverage than the static integration.  相似文献   

14.
Introducing Locality and Softness in Subspace Classification   总被引:4,自引:2,他引:2  
Subspace classifiers classify a pattern based on its distance from different vector subspaces. Earlier models of subspace classification were based on the assumption that individual classes lie in unique subspaces. In later extensions, locality was introduced into subspace classification allowing for a class to be associated with more than one sub manifold. The local subspace classifier is thus a piecewise linear classifier, and is more powerful when compared to the linear classification performed by global subspace methods. We present extensions to the basic subspace method of classification based on introducing locality and softness in the classification process. Locality is introduced by (subspace) clustering the patterns into clusters, and softness is introduced by allowing a pattern to be associated with more than one cluster. Our motivation for introducing both locality and softness is based on the premise that by introducing locality, it is possible to reduce the bias though at the cost of a possible increase in variance. By introducing softness (or aggregation), the variance can be reduced. Consequently, by introducing both locality and softness, we avoid the possibility of high variance that locality typically introduces. We derive appropriate algorithms to construct a local and soft model of subspace classifiers and present results obtained with the proposed algorithm. Received: 4 November 1998?Received in revised form: 7 December 1998?Accepted: 7 December 1998  相似文献   

15.
Graph-based semi-supervised classification depends on a well-structured graph. However, it is difficult to construct a graph that faithfully reflects the underlying structure of data distribution, especially for data with a high dimensional representation. In this paper, we focus on graph construction and propose a novel method called semi-supervised ensemble classification in subspaces, SSEC in short. Unlike traditional methods that execute graph-based semi-supervised classification in the original space, SSEC performs semi-supervised linear classification in subspaces. More specifically, SSEC first divides the original feature space into several disjoint feature subspaces. Then, it constructs a neighborhood graph in each subspace, and trains a semi-supervised linear classifier on this graph, which will serve as the base classifier in an ensemble. Finally, SSEC combines the obtained base classifiers into an ensemble classifier using the majority-voting rule. Experimental results on facial images classification show that SSEC not only has higher classification accuracy than the competitive methods, but also can be effective in a wide range of values of input parameters.  相似文献   

16.
Recently developed methods for learning sparse classifiers are among the state-of-the-art in supervised learning. These methods learn classifiers that incorporate weighted sums of basis functions with sparsity-promoting priors encouraging the weight estimates to be either significantly large or exactly zero. From a learning-theoretic perspective, these methods control the capacity of the learned classifier by minimizing the number of basis functions used, resulting in better generalization. This paper presents three contributions related to learning sparse classifiers. First, we introduce a true multiclass formulation based on multinomial logistic regression. Second, by combining a bound optimization approach with a component-wise update procedure, we derive fast exact algorithms for learning sparse multiclass classifiers that scale favorably in both the number of training samples and the feature dimensionality, making them applicable even to large data sets in high-dimensional feature spaces. To the best of our knowledge, these are the first algorithms to perform exact multinomial logistic regression with a sparsity-promoting prior. Third, we show how nontrivial generalization bounds can be derived for our classifier in the binary case. Experimental results on standard benchmark data sets attest to the accuracy, sparsity, and efficiency of the proposed methods.  相似文献   

17.
We revisit the classical technique of regularised least squares (RLS) for nonlinear classification in this paper. Specifically, we focus on a low-rank formulation of the RLS, which has linear time complexity in the size of data set only, independent of both the number of classes and number of features. This makes low-rank RLS particularly suitable for problems with large data and moderate feature dimensions. Moreover, we have proposed a general theorem for obtaining the closed-form estimation of prediction values on a holdout validation set given the low-rank RLS classifier trained on the whole training data. It is thus possible to obtain an error estimate for each parameter setting without retraining and greatly accelerate the process of cross-validation for parameter selection. Experimental results on several large-scale benchmark data sets have shown that low-rank RLS achieves comparable classification performance while being much more efficient than standard kernel SVM for nonlinear classification. The improvement in efficiency is more evident for data sets with higher dimensions.  相似文献   

18.
In most manifold learning based subspace discriminant analysis algorithms, how to construct the local neighborhood graphs and determine the effective discriminant subspace dimensions in applications are difficult but important problems. In this paper, we propose a novel supervised subspace learning method called Fisher Difference Discriminant Analysis (FDDA) for linear dimensionality reduction. FDDA introduces the local soft scatter to characterize the distributions of the data set. By combining Fisher criterion and difference criterion together, FDDA obtains the optimal discriminant subspace, on which a large margin between different classes is provided for classification. Eigenvalue analysis shows that the effective discriminant subspace dimensions of FDDA can be automatically determined by the number of positive eigenvalues and are robust to noise and invariant to rotations, rescalings and translations of the data. Comprehensive comparison and extensive experiments show that FDDA is superior to some state-of-the-art techniques in face recognition.  相似文献   

19.
Some approaches to the problem of constructing linear classifiers, including embedded ones, are studied for the case of many classes. Sufficient conditions for linear separability of classes are formulated, and specifics of the problem statement when sets are not linearly separable are considered. Different approaches to construction of optimal linear classifiers are studied, and the results of numerical experiments are presented. The properties of embedded (convex piecewise linear) classifiers are studied. It is shown that, for an arbitrary family of finite nonintersecting sets, there is an embedded linear classifier that correctly separates the points of these sets.  相似文献   

20.
《Information Fusion》2002,3(4):245-258
In classifier combination, it is believed that diverse ensembles have a better potential for improvement on the accuracy than non-diverse ensembles. We put this hypothesis to a test for two methods for building the ensembles: Bagging and Boosting, with two linear classifier models: the nearest mean classifier and the pseudo-Fisher linear discriminant classifier. To estimate diversity, we apply nine measures proposed in the recent literature on combining classifiers. Eight combination methods were used: minimum, maximum, product, average, simple majority, weighted majority, Naive Bayes and decision templates. We carried out experiments on seven data sets for different sample sizes, different number of classifiers in the ensembles, and the two linear classifiers. Altogether, we created 1364 ensembles by the Bagging method and the same number by the Boosting method. On each of these, we calculated the nine measures of diversity and the accuracy of the eight different combination methods, averaged over 50 runs. The results confirmed in a quantitative way the intuitive explanation behind the success of Boosting for linear classifiers for increasing training sizes, and the poor performance of Bagging in this case. Diversity measures indicated that Boosting succeeds in inducing diversity even for stable classifiers whereas Bagging does not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号