首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 421 毫秒
1.
氧化膜破裂理论是目前定量预测核电高温水环境中镍基合金应力腐蚀开裂速率应用最为广泛的理论模型之一,其中应力强度因子是衡量应力腐蚀开裂速率的重要参量。为进一步了解氧化膜破裂机理及裂纹扩展驱动力特性,提出了膜致应力强度因子。为了深入了解膜致应力强度因子在EAC(环境致裂)裂纹扩展过程中裂尖的力学状况,在不考虑外载的情况下,从理论和数值模拟两方面分析研究了EAC裂尖基体金属区域的应力应变分布状态,得出了膜致应力强度因子对裂尖Mises应力、等效塑性应变、拉伸应力、拉伸应变及拉伸应变梯度的影响规律,为提高定量预测高温高压水环境中镍基合金及不锈钢EAC扩展速率精度奠定基础,进而完善了氧化膜破裂机理。  相似文献   

2.
核电站一回路压力容器、管道及蒸汽发生器等设备和结构中广泛采用镍基合金和奥氏体不锈钢,而这些材料的环境致裂(EAC)却是核电结构的主要安全隐患之一。研究表明,核电高温高压水环境中镍基合金的EAC是裂尖氧化膜破裂和再生成的一个过程。为了深入了解镍基合金EAC裂纹扩展过程中裂尖的力学状况,本文从理论和数值模拟两方面分析研究了EAC裂尖氧化膜和基体金属区域的应力分布规律,为提高定量预测高温高压水环境中镍基合金EAC扩展速率精度奠定基础。  相似文献   

3.
核电站-回路压力容器、管道及蒸汽发生器等设备和结构中广泛采用镍基合金和奥氏体不锈钢,而这些材料的环境致裂(EAC)却是核电结构的主要安全隐患之一。研究表明,核电高温高压水环境中镍基合金的EAC是裂尖氧化膜破裂和再生成的一个过程。为了深入了解镍基合金EAC裂纹扩展过程中裂尖的力学状况,从理论和数值模拟两方面分析研究了EAC裂尖氧化膜和基体金属区域的应力分布规律,为提高定量预测高温高压水环境中镍基合金EAC扩展速率精度奠定基础。  相似文献   

4.
裂纹尖端氧化膜形成与破裂是核电站压力容器高温水环境中镍基合金材料应力腐蚀开裂(SCC)的主要过程之一。由于应力腐蚀裂纹尖端形貌和扩展方式的特殊性,本研究利用ABAQUS有限元软件的子模型技术,在微观尺度下对由裂尖氧化膜和基体金属共同构成的应力腐蚀裂尖应力应变场进行了分析。结果表明,SCC裂尖氧化膜前端沟形裂纹的存在,会造成氧化膜中应力和应变的很大变化,且随着沟形裂纹的长度增加,这种变化越加明显;另一方面,与氧化膜中应力相比,塑性应变对裂尖形貌变化更加敏感,从一个侧面说明,裂尖塑性应变是研究SCC裂尖氧化膜形成与破裂比较理想的力学参量。  相似文献   

5.
《铸造技术》2017,(6):1274-1277
在以滑移溶解理论为基础的裂纹扩展速率定量预测模型中,裂纹长度是裂纹扩展速率的重要影响参数之一,针对镍基合金裂尖裂纹长度的扩展规律,研究裂纹长度对镍基合金材料裂纹尖端膜致应力产生的应力应变场的影响,采用ABAQUS软件,在不考虑外载的情况下,分析膜致应力应变场随裂纹扩展长度的改变所导致裂尖力学特性的变化规律。结果表明,裂纹长度不同,裂尖膜致应力产生的应力应变分布不同,膜致应力是裂纹扩展驱动力中不可忽略的主要因素之一。  相似文献   

6.
镍基合金作为压水堆一回路安全端焊接接头焊缝的常用材料,由于严苛的服役环境以及焊缝处材料力学性能的不均匀使得镍基合金极易发生应力腐蚀开裂现象,对核电安全运行造成很大影响。为了解材料宏观结构参量变化(包括材料塑性性能以及应力强度因子K)对SCC裂纹扩展速率的变化,本文通过建立镍基合金600不同宏观结构参量下的SCC裂纹扩展有限元模型,分析了镍基合金600不同塑性以及载荷参数变化对裂尖塑性区和拉伸塑性应变的影响,结果表明塑性区尺寸及裂尖拉伸应变受到裂尖应力强度因子、屈服强度及硬化指数的影响,其中裂尖应力强度因子的影响较大,同时与屈服强度成反比,应力强度因子和硬化指数成正比;通过比较不同应力强度因子下计算所得SCC扩展速率结果和高温水环境下SCC扩展速率实验,获得了符合镍基合金600的特征距离r0的取值范围;研究结果能为核电镍基合金600的高温水环境下SCC速率预测提供一定的科学依据。  相似文献   

7.
镍基合金作为压水堆一回路安全端焊接接头焊缝的常用材料,由于严苛的服役环境以及焊缝处材料力学性能的不均匀使得镍基合金极易发生应力腐蚀开裂(SCC)现象,对核电安全运行造成很大影响。为了解材料宏观结构参量变化(包括材料塑性性能以及应力强度因子K)对SCC裂纹扩展速率的变化,通过建立镍基合金600在不同宏观结构参量下的SCC裂纹扩展有限元模型,分析了镍基合金600不同塑性以及载荷参数变化对裂尖塑性区和拉伸塑性应变的影响。结果表明:塑性区尺寸及裂尖拉伸应变受到裂尖应力强度因子、屈服强度及硬化指数的影响,其中裂尖应力强度因子的影响较大,同时与屈服强度成反比,应力强度因子和硬化指数成正比;通过比较不同应力强度因子下计算所得SCC扩展速率结果和高温水环境下SCC扩展速率实验,获得了符合镍基合金600的特征距离r0的取值范围。研究结果能为核电镍基合金600在高温水环境下SCC速率预测提供一定的科学依据。  相似文献   

8.
杨帆  孙剑伟  张文娟 《焊接》2020,(12):27-29,34
裂尖力学状态是影响结构材料应力腐蚀开裂(SCC)扩展速率的主要因素之一,针对氧化膜应力对不同时期裂纹尖端产生的力学规律,建立了SCC寿命周期有限元模型,得出氧化膜在不同裂纹扩展阶段裂尖力学场的变化。结果表明,在表面划痕开裂阶段,氧化膜对裂尖Mises应力及拉伸应力的影响最大,对裂尖的作用范围的影响则较小;随着开裂长度的增加,氧化膜对裂尖Mises应力、拉伸应力及应力强度因子K的影响越小。  相似文献   

9.
以紧凑拉伸试样为研究对象,通过加载不同大小的应力强度因子KI,用有限元方法研究了不同状态下SCC裂尖氧化膜和基体金属的应力分布规律。结果表明:裂尖区域氧化膜和基体金属对裂尖应力强度因子KI的变化敏感度不同;随着KI的增大,氧化膜破裂前和破裂后应力应变在裂尖区域的分布规律均发生了变化,该变化对裂纹扩展有一定的促进作用。  相似文献   

10.
裂尖力学状态是影响核电结构材料应力腐蚀开裂(SCC)扩展速率的主要因素之一。为了搞清SCC不同扩展阶段裂尖驱动力的变化及其对SCC扩展速率的影响,本文建立了SCC扩展不同阶段的有限元模型,详细分析了裂纹初始阶段影响裂尖应力状态的工作载荷、残余应力,以及氧化膜形成过程中产生的膜致应力。结果表明,在SCC裂纹初始阶段,裂尖氧化膜形成所产生的“锲入张力”是SCC的主要驱动力;随着裂纹的扩展,工作载荷和残余应力逐渐成为SCC裂纹扩展的主要驱动力。  相似文献   

11.
为了解表面划伤导致的不同氧化物形貌对镍基合金应力腐蚀(SCC)行为的影响,模拟了膜致应力下镍基合金划伤裂纹尖端的局部应力应变场。结果表明,楔形力是引发SCC裂纹扩展的主要驱动力。划痕裂纹前端的氧化物越厚,楔形力越大,并会增大SCC裂纹扩展速率。裂尖氧化物的形成导致了压应力、压应变和负的应变速率,并会阻碍半椭圆裂纹尖端上部和下部的SCC裂纹扩展。  相似文献   

12.
在高温水环境中,应力会提高镍基合金裂纹尖端的阳极溶解速率并加速裂纹扩展。采用弹塑性有限元方法,对高温水环境中镍基合金裂纹尖端应力和电化学腐蚀的关系进行研究。分析了应力强度因子对模拟高温水环境中600合金1T-CT试样裂纹尖端表面电化学腐蚀电位的影响,并讨论了弹性变形和塑性变形对裂纹尖端电化学腐蚀电位变化的影响。  相似文献   

13.
本研究总结了应力腐蚀研究的5个经典理论:活性通路理论、钝化膜破坏理论、氢脆理论、腐蚀产物楔入模型和环境破裂三阶段理论。详细介绍了最为广泛接受的钝化膜破坏理论,在此基础上,从单一参数计算和应力腐蚀裂纹扩展模拟两个方面着重介绍了基于有限元方法对应力腐蚀裂纹扩展的研究方法和技术,单一参数计算可以满足获取应力腐蚀裂纹扩展预测模型关键参数,但是将裂纹尖端认为是一个点的假设存在不合理,应力腐蚀裂纹扩展模拟可以将载荷和环境因素综合考虑在内,但还仍然不能仿真出裂纹微观扩展现象。研究结合实践总结提出了应力腐蚀裂纹扩展模拟的工程技术方法,讨论了有限元技术在应力腐蚀研究方面不能实现微观物理过程、时间相关性等存在的问题,指出了基于应力腐蚀时间相关性的应力腐蚀裂纹扩展模拟研究是应力腐蚀破坏预防及预测研究工作的重点。  相似文献   

14.
新型含钪Al-Mg-Cu合金的抗应力腐蚀开裂特性   总被引:1,自引:0,他引:1  
对3.5%NaCl溶液中新型含钪Al-Mg-Cu合金的应力腐蚀开裂宏观性能进行测试,并对裂纹尖端的成分与微观形貌进行分析。根据线弹性断裂力学理论,预制疲劳裂纹试样裂纹尖端处于平面应变状态,得到裂纹匀速扩展时的扩展速率、裂纹尖端应力强度因子以及应力腐蚀开裂强度因子的门槛值。扫描电镜及EDS分析表明:应力腐蚀开裂主要是沿晶扩展,预制裂纹与腐蚀介质中的溶解氧生成Al2O3,产生楔入力促使裂纹扩展;裂纹尖端基体主要发生阳极溶解反应,腐蚀产物以氯化铝为主。  相似文献   

15.
以氧化膜破裂理论和光电化学法的研究结论为基础,利用有限元分析方法对高温水环境中316不锈钢表面多层氧化膜应力腐蚀开裂(SCC)裂纹尖端微观力学状态进行了分析。结果表明:裂纹尖端区域的高应力应变区主要集中在氧化膜的Fe_3O_4层中;多层氧化膜中不同材料层的交界处均出现应力应变的突变;多层氧化膜中Cr_2O_3层和镍富集层的高应力是促使氧化膜强度减小并发生脆断的主要原因之一。  相似文献   

16.
Studies of the stress corrosion cracking (SCC) of 99.999% copper and Cu-Zn alloys containing up to 10 wt%Zn in NH4OH solution were made with varying concentrations (0.03–0.07 M) and temperatures (40–70°C). Stress corrosion cracking occurs on pure copper and all of the alloys under the condition in which thick tarnish film (Cu2O oxide film) forms. The path of cracking is transgranular for pure copper and alloys containing < 1.3 wt%Zn, but intergranular for alloys containing > 1.3 wt%Zn. Crack propagation rates and times-to-failure estimated by the tarnish rupture theory, utilizing experimentally determined values of the fracture strain of film and the creep rate of specimens during SCC tests, are in good agreement with those observed under constant load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号