首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Considers the problem of determining whether each point in a polytope n×n matrices is stable. The approach is to check stability of certain faces of the polytope. For n⩾3, the authors show that stability of each point in every (2n-4)-dimensional face guarantees stability of the entire polytope. Furthermore, they prove that, for any kn2, there exists a k-dimensional polytope containing a strictly unstable point and such that all its subpolytopes of dimension min {k-1,2n-5} are stable  相似文献   

2.
Most existing methods of mapping algorithms into processor arrays are restricted to the case where n-dimensional algorithms, or algorithms with n nested loops, are mapped into (n-1)-dimensional arrays. However, in practice, it is interesting to map n-dimensional algorithms into (k-1)-dimensional arrays where k<n. A computational conflict occurs if two or more computations of an algorithm are mapped into the same execution time. Based on the Hermite normal form of the mapping matrix, necessary and sufficient conditions are derived to identify mapping without computational conflicts. These conditions are used to find time mappings of n-dimensional algorithms into (k-1)-dimensional arrays, k<n , without computational conflicts. For some applications, the mapping is time-optimal  相似文献   

3.
A recent result by A. Linnemann (Syst. Contr. Lett., vol.11, p.27-32, 1988) gives conditions under which a continuous-time single-loop plant of order n can be stabilized by a reduced-order controller. Specifically, if the Euclidean algorithm is applied to the numerator and denominator polynomials of the transfer function and one of the remainders is a kth-order Hurwitz polynomial, then a stabilizing controller of order n-k-1 exists. The author provides an alternative proof of this result  相似文献   

4.
A parallel sorting algorithm for sorting n elements evenly distributed over 2d p nodes of a d-dimensional hypercube is presented. The average running time of the algorithm is O((n log n)/p+p log 2n). The algorithm maintains a perfect load balance in the nodes by determining the (kn/p)th elements (k1,. . ., (p-1)) of the final sorted list in advance. These p-1 keys are used to partition the sorted sublists in each node to redistribute data to the nodes to be merged in parallel. The nodes finish the sort with an equal number of elements (n/ p) regardless of the data distribution. A parallel selection algorithm for determining the balanced partition keys in O(p log2n) time is presented. The speed of the sorting algorithm is further enhanced by the distance-d communication capability of the iPSC/2 hypercube computer and a novel conflict-free routing algorithm. Experimental results on a 16-node hypercube computer show that the sorting algorithm is competitive with the previous algorithms and faster for skewed data distributions  相似文献   

5.
A unified analytical model for computing the task-based dependability (TDB) of hypercube architectures is presented. A hypercube is deemed operational as long as a task can be executed on the system. The technique can compute both reliability and availability for two types of task requirements-I-connected model and subcube model. The I-connected TBD assumes that a connected group of at least I working nodes is required for task execution. The subcube TBD needs at least an m-cube in an n-cube, mn, for task execution. The dependability is computed by multiplying the probability that x nodes (xI or x⩾2m) are working in an n-cube at time t by the conditional probability that the hypercube can satisfy any one of the two task requirements from x working nodes. Recursive models are proposed for the two types of task requirements to find the connection probability. The subcube requirement is extended to find multiple subcubes for analyzing multitask dependability. The analytical results are validated through extensive simulation  相似文献   

6.
Rotator graphs, a set of directed permutation graphs, are proposed as an alternative to star and pancake graphs. Rotator graphs are defined in a way similar to the recently proposed Faber-Moore graphs. They have smaller diameter, n-1 in a graph with n factorial vertices, than either the star or pancake graphs or the k-ary n-cubes. A simple optimal routing algorithm is presented for rotator graphs. The n-rotator graphs are defined as a subset of all rotator graphs. The distribution of distances of vertices in the n-rotator graphs is presented, and the average distance between vertices is found. The n-rotator graphs are shown to be optimally fault tolerant and maximally one-step fault diagnosable. The n-rotator graphs are shown to be Hamiltonian, and an algorithm for finding a Hamiltonian circuit in the graphs is given  相似文献   

7.
Optimal broadcasting on the star graph   总被引:2,自引:0,他引:2  
The star graph has been show to be an attractive alternative to the widely used n-cube. Like the n-cube, the star graph possesses rich structure and symmetry as well as fault tolerant capabilities, but has a smaller diameter and degree. However, very few algorithms exists to show its potential as a multiprocessor interconnection network. Many fast and efficient parallel algorithms require broadcasting as a basic step. An optimal algorithm for one-to-all broadcasting in the star graph is proposed. The algorithm can broadcast a message to N processors in O(log2 N) time. The algorithm exploits the rich structure of the star graph and works by recursively partitioning the original star graph into smaller star graphs. In addition, an optimal all-to-all broadcasting algorithm is developed  相似文献   

8.
An algorithm for convolving a k×k window of weighting coefficients with an n×n image matrix on a pyramid computer of O(n2) processors in time O(logn+k2), excluding the time to load the image matrix, is presented. If k=Ω (√log n), which is typical in practice, the algorithm has a processor-time product O(n 2 k2) which is optimal with respect to the usual sequential algorithm. A feature of the algorithm is that the mechanism for controlling the transmission and distribution of data in each processor is finite state, independent of the values of n and k. Thus, for convolving two {0, 1}-valued matrices using Boolean operations rather than the typical sum and product operations, the processors of the pyramid computer are finite-state  相似文献   

9.
Structural controllability of time-invariant and time-varying systems when the input control sequences have a restricted length k is compared. The dimensions of controllable space coincide in the following three special cases: the input sequences have length k=2; the input sequences have k=n, where n is the size of the system (i.e., the ultimate controllability is the same in both cases); and for every length of input sequences provided that the system has a single input only. It is proved that there may appear a gap for every input length k such that 2< kn/2. The case when n/2<k<n is left open  相似文献   

10.
Properties and performance of folded hypercubes   总被引:3,自引:0,他引:3  
A new hypercube-type structure, the folded hypercube (FHC), which is basically a standard hypercube with some extra links established between its nodes, is proposed and analyzed. The hardware overhead is almost 1/n, n being the dimensionality of the hypercube, which is negligible for large n. For this new design, optimal routing algorithms are developed and proven to be remarkably more efficient than those of the conventional n-cube. For one-to-one communication, each node can reach any other node in the network in at most [n/2] hops (each hop corresponds to the traversal of a single link), as opposed to n hops in the standard hypercube. One-to-all communication (broadcasting) can also be performed in only [n/2] steps, yielding a 50% improvement in broadcasting time over that of the standard hypercube. All routing algorithms are simple and easy to implement. Correctness proofs for the algorithms are given. For the proposed architecture, communication parameters such as average distance, message traffic density, and communication time delay are derived. In addition, some fault tolerance capabilities of this architecture are quantified and compared to those of the standard cube. It is shown that this structure offers substantial improvement over existing hypercube-type networks in terms of the above-mentioned network parameters  相似文献   

11.
It is shown that for a given p (1<pn ), the n-cube network can tolerate up to p2(n-p)-1 processor failures and remains connected provided that at most p neighbors of any nonfaulty processor are allowed to fail. This generalizes the result for p=n-1, obtained by A.-M Esfahanian (1989). It is also shown that the n-cube network with n⩾5 remains connected provided that at most two neighbors of any processor are allowed to fail  相似文献   

12.
A mechanism for scheduling communications in a network in which individuals exchange information periodically according to a fixed schedule is presented. A proper k edge-coloring of the network is considered to be a schedule of allowed communications such that an edge of color i can be used only at times i modulo k. Within this communication scheduling mechanism, the information exchange problem known as gossiping is considered. It is proved that there is a proper k edge-coloring such that gossip can be completed in a path of n edges in a certain time for nk⩾1. Gossip can not be completed in such a path any earlier under any proper k edge-coloring. In any tree of bounded degree Δ and diameter d, gossip can be completed under a proper Δ edge-coloring in time (Δ-1)d +1. In a k edge-colored cycle of n vertices, other time requirements of gossip are determined  相似文献   

13.
A new parallel algorithm is proposed for fat image labeling using local operators on image pixels. The algorithm can be implemented on an n×n mesh-connected computer such that, for any integer k in the range [1, log (2n)], the algorithm requires Θ(kn1k/) bits of local memory per processor and takes Θ(kn) time. Bit-serial processors and communication links can be used without affecting the asymptotic time complexity of the algorithm. The time complexity of the algorithm has very small leading constant factors, which makes it superior to previous mesh computer labeling algorithms for most practical image sizes (e.g. up to 4096×4096 images). Furthermore, the algorithm is based on using stacks that can be realized using very fast shift registers within each processing element  相似文献   

14.
Out-of-roundness problem revisited   总被引:4,自引:0,他引:4  
The properties and computation of the minimum radial separation (MRS) standard for out-of-roundness are discussed. Another standard out-of-roundness measurement called the minimum area difference (MAD) center is introduced. Although the two centers have different characteristics, the approach to finding both centers shares many commonalities. An O(n log n+k) time algorithm which is used to compute the MRS center is presented. It also computes the MAD center of a simple polygon G, where n is the number of vertices of G, and k is the number of intersection points of the medial axis and the farthest-neighbor Voronoi diagram of G. The relationship between MRS and MAD is discussed  相似文献   

15.
The problem of electing a leader in a dynamic ring in which processors are permitted to fail and recover during election is discussed. It is shown that &thetas;(n log n+kr) messages, counting only messages sent by functional processors, are necessary and sufficient for dynamic ring election, where kr is the number of processor recoveries experienced  相似文献   

16.
An efficient digital search algorithm that is based on an internal array structure called a double array, which combines the fast access of a matrix form with the compactness of a list form, is presented. Each arc of a digital search tree, called a DS-tree, can be computed from the double array in 0(1) time; that is to say, the worst-case time complexity for retrieving a key becomes 0(k) for the length k of that key. The double array is modified to make the size compact while maintaining fast access, and algorithms for retrieval, insertion, and deletion are presented. If the size of the double array is n+cm, where n is the number of nodes of the DS-tree, m is the number of input symbols, and c is a constant particular to each double array, then it is theoretically proved that the worst-case times of deletion and insertion are proportional to cm and cm2, respectively, and are independent of n. Experimental results of building the double array incrementally for various sets of keys show that c has an extremely small value, ranging from 0.17 to 1.13  相似文献   

17.
Multis, shared-memory multiprocessors that are implemented with single buses and snooping cache protocols are inherently limited to a small number of processors, and, as systems grow beyond a single bus, the bandwidth requirements of broadcast operations limit scalability. Hardware support to provide cache coherence without the use of broadcast can become very expensive. An approach to maintaining coherence using approximate information held in special-purpose caches called pruning-caches that provides robust performance over a wide range of workloads is presented. The pruning-cache approach is compared to the more conventional inclusion cache for providing multilevel inclusion (MLI) in the cache hierarchy. It is shown that pruning-caches are more cost-effective and more robust. Using both analysis and simulation, it is also shown that the k-ary n-cube topology provides scalable, bottleneck-free communication for uniform, point-to-point traffic  相似文献   

18.
A distributed knot detection algorithm for general graphs is presented. The knot detection algorithm uses at most O(n log n+m) messages and O(m+n log n) bits of memory to detect all knots' nodes in the network (where n is the number of nodes and m is the number of links). This is compared to O(n2) messages needed in the best algorithm previously published. The knot detection algorithm makes use of efficient cycle detection and clustering techniques. Various applications for the knot detection algorithms are presented. In particular, its importance to deadlock detection in store and forward communication networks and in transaction systems is demonstrated  相似文献   

19.
The authors study the converse of V.L. Kharitonov's polynomial problem (1978) by asking whether the complete instability of a box of polynomials can be determined from extreme sets. They show that it is not enough to check the (n-4)-dimensional boundary, but prove that the complete instability of the (n-1)-dimensional boundary is sufficient  相似文献   

20.
Applications of an automated tool for module specification (ATMS) that finds the specification for a submodule of a system are presented. Given the specification of a system, together with the specification for n-1 submodules, the ATMS constructs the specification for the nth addition submodule such that the interaction among the n submodules is equivalent to the specification of the system. The implementation of the technique is based on an approach proposed by P. Merlin and G.B. Bochmann (1983). The specification of a system and its submodules consists of all possible execution sequences of their individual operations. The ATMS uses finite-state machine concepts to represent the specifications and interactions of the system and its submodules. The specification found by the ATMS for a missing module of a system is the most general one, if one exists. Application of the ATMS in the area of communication protocols is discussed. A manual process to find the specification for a missing module using the Merlin-Bochmann technique is time-consuming and prone to errors. The automated tool presented proves a reliable method for constructing such a module  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号