首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluation of Co---Mo catalysts prepared on various TiO2-Al2O3 supports has been made for thiophene under atmospheric pressure, dibenzothiophene under high pressure and gasoil in a classical pilot plant. Comparison of activities indicates DBT as more representative of a real feedstock and the Co---Mo/TiO2 (50%)-Al2O3 (50%) catalyst appears more active than the Co---Mo/Al2O3 sample toward HDS, HDN and hydrodearomatization.  相似文献   

2.
The effect of the TiO2–Al2O3 mixed oxide support composition on the hydrodesulfurization (HDS) of gasoil and the simultaneous HDS and hydrodenitrogenation (HDN) of gasoil+pyridine was studied over two series of CoMo and NiMo catalysts. The intrinsic activities for gasoil HDS and pyridine HDN were significantly increased by increasing the amount of TiO2 into the support, and particularly over rich- and pure-TiO2-based catalysts. It is suggested that the increase in activity be due to an improvement in reducing and sulfiding of molybdena over TiO2. The inhibiting effect of pyridine on gasoil HDS was found to be similar for all the catalysts, i.e., was independent of the support composition. The ranking of the catalysts for the gasoil HDS test differed from that obtained for the thiophene test at different hydrogen pressures. In the case of gasoil HDS, the activity increases with TiO2 content and large differences are observed between the catalysts supported on pure Al2O3 and pure TiO2. In contrast, in the case of the thiophene test, the pure Al2O3-based catalyst appeared relatively more active than the catalysts supported on mixed oxides. Also, in the thiophene test the difference in intrinsic activity between the pure Al2O3-based catalyst appeared relatively more active than the catalysts supported on mixed oxides. Also in the thiophene test, the difference in intrinsic activity between the pure Al2O3- and pure TiO2-based catalysts is relatively small and dependent on the H2 pressure used. Such differences in activity trend among the gasoil and the thiophene tests are due to a different sensitivity of the catalysts (by different support or promoter) to the experimental conditions used. The results of the effect of the H2 partial pressure on the thiophene HDS, and on the effect of H2S concentration on gasoil HDS demonstrate the importance of these parameters, in addition to the nature of the reactant, to perform an adequate catalyst ranking.  相似文献   

3.
Composite types of TiO2–Al2O3 supports, which are γ-aluminas coated by titania, have been prepared by chemical vapor deposition (CVD), using TiCl4 as a precursor. Then supported molybdenum catalysts have been prepared by an impregnation method. As supports, we employed γ-alumina, anatase types of titania, and composite types of TiO2–Al2O3 with different loadings of TiO2. We studied the conversion of Mo from oxidic to sulfidic state through sulfurization by X-ray photoelectron spectroscopy (XPS). The obtained spectra unambiguously revealed the higher reducibility from oxidic to sulfidic molybdenum species on the TiO2 and TiO2–Al2O3 supports compared to that on the Al2O3 support. Higher TiO2 loadings of the TiO2–Al2O3 composite support led to higher reducibility for molybdenum species. Furthermore, the catalytic behavior of supported molybdenum catalysts has been investigated for hydrodesulfurization (HDS) of dibenzothiophene (DBT) and methyl-substituted DBT derivatives. The conversion over the TiO2–Al2O3 supported Mo catalysts, in particular for the 4,6-dimethyl-DBT, is much higher than that obtained over Al2O3 supported Mo catalyst. The ratio of the corresponding cyclohexylbenzene (CHB)/biphenyl (BP) derivatives is increased over the Mo/TiO2–Al2O3. This indicates that the prehydrogenation of an aromatic ring plays an important role in the HDS of DBT derivatives over TiO2–Al2O3 supported catalysts.  相似文献   

4.
Development of new catalysts for deep hydrodesulfurization of gas oil   总被引:3,自引:0,他引:3  
TiO2–Al2O3 composite supports have been prepared by chemical vapor deposition (CVD) over γ-Al2O3 substrate, using TiCl4 as the precursor. High dispersion of TiO2 overlayer on the surface of Al2O3 has been obtained, and no cluster formation has been detected. The catalytic behavior of Mo supported on Al2O3, TiO2 and TiO2–Al2O3 composite has been investigated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT) and methyl-substituted DBT derivatives. The conversion over the Mo catalysts supported on TiO2–Al2O3 composite, in particular for the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT) is much higher than that of conversion obtained over Mo catalyst supported on Al2O3. The ratio of the corresponding cyclohexylbenzenes/biphenyls is increased over Mo catalyst supported on TiO2–Al2O3 composite support. This means that the reaction rate of prehydrogenation of an aromatic ring rather than the rate of hydrogenolysis of C–S bond cleavage is accelerated for the HDS of DBT derivatives. The Mo/TiO2–Al2O3 catalyst leads to higher catalytic performance for deep HDS of gas oil.  相似文献   

5.
A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.  相似文献   

6.
The typical physico-chemical properties and their hydrodesulfurization activities of NiMo/TiO2-Al2O3 series catalysts with different TiO2 loadings were studied. The catalysts were evaluated with a blend of two kinds of commercially available diesels in a micro-reactor unit. Many techniques including N2-adsorption, UV–vis DRS, XRD, FT-Raman, TPR, pyridine FT-IR and DRIFT were used to characterize the surface and structural properties of TiO2-Al2O3 binary oxide supports and the NiMo/TiO2-Al2O3 catalysts. The samples prepared by sol–gel method possessed large specific surface areas, pore volumes and large average pore sizes that were suitable for the high dispersion of nickel and molybdenum active components. UV–vis DRS, XRD and FT-Raman results indicated that the presence of anatase TiO2 species facilitated the formation of coordinatively unsaturated sites (CUS) or sulfur vacancies, and also promoted high dispersion of Mo active phase on the catalyst surfaces. DRIFT spectra of NO adsorbed on the pure MoS2 and the catalysts with TiO2 loadings of 15 and 30% showed that NiMo/TiO2-Al2O3 catalysts possessed more CUS than that of pure MoS2. HDS efficiencies and the above characterization results confirmed that the incorporation of TiO2 into Al2O3 could adjust the interaction between support and active metals, enhanced the reducibility of molybdenum and thus resulted in the high activity of HDS reaction.  相似文献   

7.
The present paper gives a detailed review of the different studies under investigation in our laboratory concerning the use of TiO2 and TiO2–Al2O3 composites prepared by chemical vapor deposition (CVD) as support for sulfide catalysts in the HDS of dibenzothiophene (DBT) derivatives. The supports investigated here are: TiO2 (from Degussa, 50 m2/g), Al2O3 (Nikki, 186 m2/g) and TiO2–Al2O3 supports prepared by CVD of TiCl4 on alumina. Using several characterization techniques, we have demonstrated that the support composite presents a high dispersion of TiO2 over γ-Al2O3 without forming precipitates up to ca. 11 wt.% loading. Moreover, the textural properties of the support composite are comparable to those of alumina. XPS investigations of Mo and NiMo catalysts supported on the different carriers show that Mo-oxide species exhibit a higher degree of sulfidation on the surface of TiO2 and TiO2–Al2O3 than on alumina. The HDS tests of 4,6-DMDBT under mild operating conditions (573 K, 3 MPa) show that sulfide catalysts supported on the composite support (ca. 11 wt.%) are more active than those supported on to TiO2 or Al2O3. This higher HDS catalytic activity is attributed to the promotion of the hydrodesulfurization pathway, whereby the pre-hydrogenation of one of the aromatic rings adjacent to the thiophenic one may reduce the steric hindrance caused by the two methyl groups adjacent to the sulfur atom during the C–S bond cleavage.  相似文献   

8.
Catalytic activities of Al2O3–TiO2 supporting CoMo and NiMo sulfides (CoMoS and NiMoS) catalysts were examined in the transalkylation of isopropylbenzene and hydrogenation of naphthalene as well as the hydrodesulfurization (HDS) of model sulfur compounds, conventional gas oil (GO), and light cycle oil (LCO). Al2O3–TiO2 supporting catalysts exhibited higher activities for these reactions except for the HDS of the gas oil than a reference Al2O3 supporting catalyst, indicating the correlation of these activities. Generally, more content of TiO2 promoted the activities. Inferior activity of the catalyst for HDS of the gas oil is ascribed to its inferior activity for HDS of dibenzothiophene (DBT) in gas oil as well as in model solvent decane, while the refractory 4,6-dimethyldibenzothiophene (4,6-DMDBT) in gas oil as well as in decane was more desulfurized on the catalyst. Characteristic features of Al2O3–TiO2 catalyst are discussed based on the paper results.  相似文献   

9.
The water-gas shift (WGS) activity of platinum catalysts dispersed on a variety of single metal oxides as well as on composite MOx/Al2O3 and MOx/TiO2 supports (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, La, Ce, Nd, Sm, Eu, Gd, Ho, Er, Tm) has been investigated in the temperature range of 150–500 °C, using a feed composition consisting of 3% CO an 10% H2O. For Pt catalysts supported on single metal oxides, it has been found that both the apparent activation energy of the reaction and the intrinsic rate depend strongly on the nature of the support. In particular, specific activity of Pt at 250 °C is 1–2 orders of magnitude higher when supported on “reducible” compared to “irreducible” metal oxides. For composite Pt/MOx/Al2O3 and Pt/MOx/TiO2 catalysts, it is shown that the presence of MOx results in a shift of the CO conversion curve toward lower reaction temperatures, compared to that obtained for Pt/Al2O3 or Pt/TiO2, respectively. The specific reaction rate is in most cases higher for composite catalysts and varies in a manner which depends on the nature, loading, and primary crystallite size of dispersed MOx. Results are explained by considering that reducibility of small oxide particles increases with decreasing crystallite size, thereby resulting in enhanced WGS activity. Therefore, evidence is provided that the metal oxide support is directly involved in the WGS reaction mechanism and determines to a significant extent the catalytic performance of supported noble metal catalysts. Results of catalytic performance tests obtained under realistic feed composition, consisting of 3% CO, 10% H2O, 20% H2 and 6% CO2, showed that certain composite Pt/MOx/Al2O3 and Pt/MOx/TiO2 catalysts are promising candidates for the development of active WGS catalysts suitable for fuel cell applications.  相似文献   

10.
Mo/TiO2 catalysts were modified with Nb by two different methods, sol–gel and surface deposition, in order to study the effect of Nb incorporation on the thiophene HDS activity. The results show that the formation of Nb–Ti mixed oxides leads to catalysts with poor HDS activity while the deposition of Nb oxide species on the surface of TiO2 leads to catalysts with activities larger than those of Mo/Al2O3 and Mo/TiO2. This increase in activity was attributed to the formation of a larger population of Mo sulfur anionic vacancies when Nb was surface deposited on the TiO2.  相似文献   

11.
MoNi/Al2O3 catalysts have been widely used for hydrodesulphurisation of oil fractions. In order to enhance the catalytic activities for HDS and HDN, catalysts supported on titania-modified alumina carriers have been studied. The MoNi/Al2O3–TiO2catalysts were characterised by benzene sorption, ammonia sorption, temperature programmed reduction, X-ray diffraction and scanning electron microscopy. The supports effect was examined by comparing thiophene conversion and sulphur or nitrogen contents in diesel oil fraction.  相似文献   

12.
Hydrotreating of Maya heavy crude oil over high specific surface area CoMo/TiO2–Al2O3 oxide supported catalysts was studied in an integral reactor close to industrial practice. Activity studies were carried out with Maya crude hydrodesulfurization (HDS), hydrodemetallization (HDM), hydrodenitrogenation (HDN), and hydrodeasphaltenization (HDAs) reactions. The effect of support composition, the method of TiO2 incorporation, and the catalyst deactivation are examined. Supported catalysts are characterized by BET specific surface area (SSA), pore volume (PV), pore size distribution (PSD), and atomic absorption. It has been found that sulfided catalysts showed a wide range of activity variation with TiO2 incorporation into the alumina, which confirmed that molybdenum sulfided active phases strongly depend on the nature of support. The pore diameter and nature of the active site for HDS, HDM, HDN, and HDAs account for the influence of the large reactant molecules restricted diffusion into the pore, and/or the decrease in the number of active sites due to the MoS2 phases buried with time-on-stream. The textural properties and hysteresis loop area of supported and spent catalysts indicated that catalysts were deactivated at the pore mouth due to the metal and carbon depositions. The atomic absorption results agreed well regarding the textural properties of spent catalysts. Thus, incorporation of TiO2 with γ-Al2O3 alters the nature of active metal interaction with support, which may facilitate the dispersion of active phases on the support surface. Therefore, the TiO2 counterpart plays a promoting role to HDS activity due to the favorable morphology of MoS2 phases and metal support interaction.  相似文献   

13.
TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was investigated. Compared with Ru/Al_2O_3 catalyst, the Ru/TiO_2–Al_2O_3catalytic system exhibited a much higher activity in CO_2 methanation reaction. The reaction rate over Ru/TiO_2–Al_2O_3 was 0.59 mol CO_2·(g Ru)1·h-1, 3.1 times higher than that on Ru/Al_2O_3[0.19 mol CO_2·(gRu)-1·h-1]. The effect of TiO_2 content and TiO_2–Al_2O_3calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H_2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO_2–Al_2O_3support is 2.8 nm, smaller than that on Al_2O_3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO_2–Al_2O_3catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO_2 support, which hindered the aggregation of Ru nanoparticles.  相似文献   

14.
苑丹丹  张永江  李锋  宋华 《化工进展》2015,34(7):1882-1886
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体, 以柠檬酸为络合剂, 浸渍法制备了负载型Ni2P/TiO2-Al2O3催化剂前体, 程序升温H2还原法制备了Ni2P/TiO2-Al2O3催化剂, 并用 X 射线衍射(XRD)、N2吸附比表面积(BET)测定技术对催化剂的结构和性质进行了表征, 考察了浸渍方法、Ni/P摩尔比、Ni2P负载量对其进行的二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响。结果表明, 当Ni/P比低于1:1时, 能得到单一的Ni2P物相;当Ni/P比为2:1时, 开始出现Ni3P物相。采用Ni/P比为1:1、Ni2P负载量为30%、采用共浸渍方法制备的Ni2P/TiO2-Al2O3催化剂具有最好的活性, 在360℃、3.0MPa、氢油比500 (体积比)、液时体积空速2.0h-1的条件下反应4h时, 二苯并噻吩转化率为99.5%。  相似文献   

15.
采用等体积浸渍法制备了以TiO_2-Al_2O_3为载体,Ni、W为活性金属组分的加氢脱硫催化剂,考察了稀土金属镧(La)、乙二胺四乙酸(EDTA)改性以及La-EDTA组合改性对催化剂结构和加氢脱硫性能的影响。通过X射线衍射、N2吸附-脱附、H2-程序升温还原和扫描电子显微镜对催化剂进行表征分析。结果表明,La和EDTA均可改善活性组分与载体间的相互作用,增加了Ni-W-S活性相的数量,有利于金属组分的还原;同时能够丰富催化剂孔道,抑制催化剂表面金属离子聚集,得到更好的孔结构、更高的活性相分散度。La或EDTA以及两者同时改性后的催化剂噻吩硫脱除率均明显高于未改性催化剂,其中Ni-W-La-E催化剂上噻吩转化率为99.7%。  相似文献   

16.
The activity and selectivity of rhenium promoted cobalt Fischer–Tropsch catalysts supported on Al2O3, TiO2 and SiO2 have been studied in a fixed-bed reactor at 483 K and 20 bar. Exposure of the catalysts to water added to the feed deactivates the Al2O3 supported catalyst, while the activity of the TiO2 and SiO2 supported catalysts increased. However, at high concentrations of water both the SiO2 and TiO2 supported catalyst deactivated. Common for all catalysts was an increase in C5+ selectivity and a decrease in the CH4 selectivity by increasing the water partial pressure. The catalysts have been characterized by scanning transmission electron microscope (STEM), BET, H2 chemisorption and X-ray diffraction (XRD).  相似文献   

17.
Ag-based catalysts supported on various metal oxides, Al2O3, TiO2, and TiO2–Al2O3, were prepared by the sol–gel method. The effect of SO2 on catalytic activity was investigated for NO reduction with propene under lean burn condition. The results showed the catalytic activities were greatly enhanced on Ag/TiO2–Al2O3 in comparison to Ag/Al2O3 and Ag/TiO2, especially in the low temperature region. Application of different characterization techniques revealed that the activity enhancement was correlated with the properties of the support material. Silver was highly dispersed over the amorphous system of TiO2–Al2O3. NO3 rather than NO2 or NOx reacted with the carboxylate species to form CN or NCO. NO2 was the predominant desorption species in the temperature programmed desorption (TPD) of NO on Ag/TiO2–Al2O3. More amount of formate (HCOO) and CN were generated on the Ag/TiO2–Al2O3 catalyst than the Ag/Al2O3 catalyst, due to an increased number of Lewis acid sites. Sulfate species, resulted from SO2 oxidation, played dual roles on catalytic activity. On aged samples, the slow decomposition of accumulated sulfate species on catalyst surface led to poor NO conversion due to the blockage of these species on active sites. On the other hand, catalytic activity was greatly enhanced in the low temperature region because of the enhanced intensity of Lewis acid site caused by the adsorbed sulfate species. The rate of sulfate accumulation on the Ag/TiO2–Al2O3 system was relatively slow. As a consequence, the system showed superior capability for selective adsorption of NO and SO2 toleration to the Ag/Al2O3 catalyst.  相似文献   

18.
Alumina–titania supports containing 5–50 wt.% of TiO2 were prepared by coprecipitation method using inorganic precursors (sodium aluminate and titanium chloride). DTA-TGA, XRD, SEM, TPDNH3, and IR spectroscopy were used to characterise these materials. The study shows that the promoting effect of nickel on the HDS activity of molybdenum catalysts supported on Al2O3TiO2 is significantly lower than that for molybdenum catalyst supported on Al2O3, and depends on the TiO2 content. The SEM results show that in the case of rich Al support (20 wt.% of TiO2) molybdenum was aggregated on the external surface of the catalyst, whereas it was uniformly dispersed on the external surface of alumina. Results also show that molybdenum is preferably supported on aluminum oxide. Application of Al2O3TiO2 oxides enhances the HDN activity of nickel–molybdenum catalysts. The highest HDN efficiency was obtained for the NiMo/Al2O3TiO2 catalyst containing 50 wt.% of TiO2. HDN activity was found to depend on protonic acidity and anatase content.  相似文献   

19.
Support effects form important aspect of hydrodesulfurization (HDS) studies and mixed oxide supports received maximum attention in the last two decades. This review will focus attention on studies on mixed oxide supported Mo and W catalysts. For convenience of discussion, these are divided into Al2O3 containing mixed oxide supports, TiO2 containing mixed oxide supports, ZrO2 containing mixed oxide supports and other mixed oxide supports containing all the rest. TiO2 containing mixed oxides received maximum attention, especially TiO2–Al2O3 supported catalysts. A brief discussion about their prospects for application to ultradeep desulfurization is also included. An overview of the available literature with emphasis on research carried out in our laboratory form the contents of this publication.  相似文献   

20.
Co–Mo model sulfide catalysts, in which CoMoS phases are selectively formed, were prepared by means of a CVD technique using Co(CO)3NO as a precursor of Co. It is shown by means of XPS, FTIR and NO adsorption that CoMoS phases form selectively when the Mo content exceeds monolayer loading. A single exposure of MoS2/Al2O3 to a vapor of Co(CO)3NO at room temperature fills the edge sites of the MoS2 particles. It is suggested that the maximum potential HDS activity of MoS2/Al2O3 and Co–Mo/Al2O3 catalysts can be predicted by means of Co(CO)3NO as a “probe” molecule. An attempt was made to determine the fate of Co(CO)3NO adsorbed on MoS2/Al2O3. The effects of the support on Co–Mo sulfide catalysts in HDS and HYD were investigated by use of CVD-Co/MoS2/support catalysts. XPS and NO adsorption showed that model catalysts can also be prepared for SiO2-, TiO2- and ZrO2-supported catalysts by means of the CVD technique. The thiophene HDS activity of CVD-Co/MoS2/Al2O3, CVD-Co/MoS2/TiO2 and CVD-Co/MoS2/Al2O3 is proportional to the amount of Co species interacting with the edge sites of MoS2 particles or CoMoS phases. It is concluded that the support does not influence the HDS reactivity of CoMoS phases supported on TiO2, ZrO2 and Al2O3. In contrast, CoMoS phases on SiO2 show catalytic features characteristic of CoMoS Type II. With the hydrogenation of butadiene, on the other hand, the Co species on MoS2/TiO2, ZrO2 and SiO2 have the same activity, while the Co species on MoS2/Al2O3 have a higher activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号