首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper significantly extends previous studies to the transition regime by employing the second-order slip boundary conditions. A simple analytical model with second-order slip boundary conditions for a normalized Poiseuille number is proposed. The model can be applied to either rarefied gas flows or apparent liquid slip flows. The developed simple models can be used to predict the Poiseuille number, mass flow rate, tangential momentum accommodation coefficient, pressure distribution of gaseous flow in noncircular microchannels and nanochannels by the research community for the practical engineering design of microchannels and nanochannels. The developed second-order models are preferable since the difficulty and “investment” is negligible compared with the cost of alternative methods such as molecular simulations or solutions of Boltzmann equation. Navier–Stokes equations with second-order slip models can be used to predict quantities of engineering interest such as the Poiseuille number, tangential momentum accommodation coefficient, mass flow rate, pressure distribution, and pressure drop beyond its typically acknowledged limit of application. The appropriate or effective second-order slip coefficients include the contribution of the Knudsen layers in order to capture the complete solution of the Boltzmann equation for the Poiseuille number, mass flow rate, and pressure distribution. It could be reasonable that various researchers proposed different second-order slip coefficients because the values are naturally different in different Knudsen number regimes. It is analytically shown that the Knudsen’s minimum can be predicted with the second-order model and the Knudsen value of the occurrence of Knudsen’s minimum depends on inlet and outlet pressure ratio. The compressibility and rarefaction effects on mass flow rate and the curvature of the pressure distribution by employing first-order and second-order slip flow models are analyzed and compared. The condition of linear pressure distribution is given.  相似文献   

2.
Numerical simulations have been performed on the pressure-driven rarefied flow through channels with a sudden contraction–expansion of 2:1:2 using isothermal two and three-dimensional lattice Boltzmann method (LBM). In the LBM, a Bosanquet-type effective viscosity and a modified second-order slip boundary condition are used to account for the rarefaction effect on gas viscosity to cover the slip and transition flow regimes, that is, a wider range of Knudsen number. Firstly, the in-house LBM code is verified by comparing the computed pressure distribution and flow pattern with experimental ones measured by others. The verified code is then used to study the effects of the outlet Knudsen number Kn o , driving pressure ratio P i /P o , and Reynolds number Re, respectively, varied in the ranges of 0.001–1.0, 1.15–5.0, and 0.02–120, on the pressure distributions and flow patterns as well as to document the differences between continuum and rarefied flows. Results are discussed in terms of the distributions of local pressure, Knudsen number, centerline velocity, and Mach number. The variations of flow patterns and vortex length with Kn o and Re are also documented. Moreover, a critical Knudsen number is identified to be Kn oc  = 0.1 below and above which the behaviors of nonlinear pressure profile and velocity distribution and the variations of vortex length with Re upstream and downstream of constriction are different from those of continuum flows.  相似文献   

3.
Poiseuille number of rarefied gas flow in channels with designed roughness is studied and a multiplicative decomposition of Poiseuille number on the effects of rarefaction and roughness is proposed. The numerical methodology is based on the mesoscopic lattice Boltzmann method. In order to eliminate the effect of compressibility, the incompressible lattice Boltzmann model is used and the periodic boundary is imposed on the inlet and outlet of the channel. The combined bounced condition is applied to simulate the velocity slip on the wall boundary. Numerical results reveal the two opposite effects that velocity gradient and friction factor near the wall increase as roughness effect increases; meanwhile, the increments of the rarefaction effect and velocity slip lead to a corresponding decrement of friction factor. An empirical relation of Poiseuille number which contains the two opposite effects and has a better physical meaning is proposed in the form of multiplicative decomposition, and then is validated by available experimental and numerical results.  相似文献   

4.
The time-dependent isothermal fully developed rarefied gas flow in a circular tube driven by harmonically oscillating pressure gradient is investigated, based on the linearized unsteady BGK kinetic model equation. The flow is characterized by the gas rarefaction parameter, which is proportional to the inverse Knudsen number and the oscillation parameter, defined as the ratio of the collision frequency over the pressure gradient oscillation frequency. Computational results of the amplitude and the phase angle of the flow rates and the velocity distributions, as well as of the periodic time evolution of these macroscopic quantities, are provided, covering the whole range of the two parameters. The kinetic results properly recover the limiting solutions in the slip and free molecular regimes for low- and high-speed oscillations. At low frequencies, the time-dependent flow becomes quasi-steady and gradually tends to the corresponding steady-steady one, which is reached faster when the flow is more rarefied. As the frequency is increased, the amplitude of the macroscopic quantities is decreased and their phase angle lag with respect to the pressure gradient is increased approaching asymptotically the limiting value of \(\pi /2\). In terms of the gas rarefaction, there is a non-monotonic behavior and the maximum flow rate amplitude may be observed at some intermediate value of the gas rarefaction parameter depending upon the oscillation parameter. At high frequencies, the flow consists of an inviscid piston flow in the core and the frictional Stokes wall layer with a velocity overshoot. These effects, well known in the viscous regime, are also present here in the transition regime and depend on both the gas rarefaction and oscillation parameters. As the gas rarefaction is increased, higher oscillation frequencies are needed to trigger these phenomena. Oscillatory rarefied flows are of main interest in sensors, controllers and resonators, which may be present in various microfluidic applications (e.g., microcooling, microseparators and micropropulsion).  相似文献   

5.
An extended slip velocity boundary condition is derived from the regularized 13 moment equations firstly. Different from the existing slip velocity boundary condition, the slip coefficients of the extended one are not fixed, which will change with the wall accommodation coefficient and the Knudsen number of the gas flow. Using the extended slip velocity condition, an improved modified Reynolds equation for thin-film gas lubrication is established. From solving the improved modified Reynolds equation, the pressure distribution of the slider gas bearing is obtained and has a better agreement with that from the direct simulation Monte Carlo method under different pitch angles and wall velocities. It is found that the improved modified Reynolds equation can predict a more accurate pressure distribution of the slider gas bearing than the Fukui and Kaneko’s lubrication model from the linearized Boltzmann equation in the near transition regime.  相似文献   

6.
The main theoretical and experimental results from the literature about steady pressure-driven gas microflows are summarized. Among the different gas flow regimes in microchannels, the slip flow regime is the most frequently encountered. For this reason, the slip flow regime is particularly detailed and the question of appropriate choice of boundary conditions is discussed. It is shown that using second-order boundary conditions allows us to extend the applicability of the slip flow regime to higher Knudsen numbers that are usually relevant to the transition regime.The review of pulsed flows is also presented, as this kind of flow is frequently encountered in micropumps. The influence of slip on the frequency behavior (pressure gain and phase) of microchannels is illustrated. When subjected to sinusoidal pressure fluctuations, microdiffusers reveal a diode effect which depends on the frequency. This diode effect may be reversed when the depth is shrunk from a few hundred to a few m.Thermally driven flows in microchannels are also described. They are particularly interesting for vacuum generation using microsystems without moving parts.  相似文献   

7.
We present results using three different continuum-based models to study oscillatory flow in the transition regime. Data obtained from numerical solutions of the Boltzmann equation and the direct simulation Monte Carlo method, are used to assess the ability of the continuum models to capture important rarefaction effects. We further highlight the need to consider two Knudsen numbers: one based upon the length scale and the other upon the time scale. It is found that the regularized 26 moment model can follow kinetic theory in the early transition regime in terms of both Knudsen numbers but the regularized 13 moment equations can only be used up to the upper limit of the hydrodynamic regime. However, the subtle interplay of the length and time scales on oscillatory non-equilibrium flow causes the Navier–Stokes equations to fail even in the hydrodynamic regime. In addition, the effect of modifying the accommodation coefficient is also considered. It is found that reducing the accommodation coefficient on the stationary wall alone will increase the motion of the gas. However, gaseous movement will be reduced by changing both walls from diffusive to specular reflection.  相似文献   

8.
A lattice Boltzmann model for simulating isothermal micro flows has been proposed by us recently [Niu XD, Chew YT, Shu C. A lattice Boltzmann BGK model for simulation of micro flows. Europhys Lett 2004;67(4):600]. In this paper, we extend the model to simulate the micro thermal flows. In particular, the thermal lattice Boltzmann equation (TLBE) [He X, Chen S, Doolen GD. A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys 1998;146:282] is used with modification of the relaxation times linking to the Knudsen number. The diffuse scattering boundary condition (DSBC) derived in our early model is extended to consider temperature jump at wall boundaries. Simple theoretical analyses of the DSBC are presented and the results are found to be consistent with the conventional velocity slip and temperature jump boundary conditions. Numerical validations are carried out by simulating two-dimensional thermal Couette flows and developing thermal flows in a microchannel, and the obtained results are found to be in good agreement with those given from the direct simulation Monte Carlo (DSMC), the molecular dynamics (MD) approaches and the Maxwell theoretical prediction.  相似文献   

9.
Using the recently developed smart wall molecular dynamics algorithm, shear-driven gas flows in nano-scale channels are investigated to reveal the surface–gas interaction effects for flows in the transition and free molecular flow regimes. For the specified surface properties and gas–surface pair interactions, density and stress profiles exhibit a universal behavior inside the wall force penetration region at different flow conditions. Shear stress results are utilized to calculate the tangential momentum accommodation coefficient (TMAC) between argon gas and FCC walls. The TMAC value is shown to be independent of the flow properties and Knudsen number in all simulations. Velocity profiles show distinct deviations from the kinetic theory based solutions inside the wall force penetration depth, while they match the linearized Boltzmann equation solution outside these zones. Results indicate emergence of the wall force field penetration depth as an additional length scale for gas flows in nano-channels, breaking the dynamic similarity between rarefied and nano-scale gas flows solely based on the Knudsen and Mach numbers.  相似文献   

10.
For tight porous media, the permeability measured from the Darcy test is only an apparent permeability because the Klinkenberg effect occurs when the Knudsen number is high. To determine the intrinsic permeability, we need a simple and rigorous permeability correction that is valid in the entire flow regime. Thus, introducing a non-Maxwellian slip boundary condition, we develop the bivelocity hydrodynetics in this paper. The bivelocity hydrodynetics is defined by combining bivelocity hydrodynamics with kinetic theories. In the framework of the bivelocity hydrodynetics, we derive a simple and rigorous permeability correction based on the analytical solutions of rarefied gas flows in micro- and nano-tubes. After compared with conventional solutions and experiments, the present solutions are validated in the entire flow regime. Moreover, the validation is also a clear proof for the bivelocity theories.  相似文献   

11.
《Computers & Fluids》2006,35(8-9):978-985
A computational method based on a kinetic model Boltzmann equation has been developed for microscale low speed flows. The results obtained with the method are compared with those of the direct simulation Monte Carlo method and experiments for supersonic flows. Numerical results for low speed flows over a microcircular cylinder and a microsphere are also obtained with the method, while it is difficult to obtain the low speed flow results with the direct simulation Monte Carlo method. Results of the Navier–Stokes equations with slip boundary conditions generally agree with those of the kinetic model Boltzmann equation if the Knudsen number is less than 0.1. A kinetic/continuum hybrid method has also been developed. The hybrid method may be a promising tool for analyzing whole flow regimes from free molecule to continuum flows.  相似文献   

12.
The Boltzmann simplified velocity distribution function equation, as adapted to various flow regimes, is described on the basis of the Boltzmann–Shakhov model from the kinetic theory of gases in this study. The discrete velocity ordinate method of gas-kinetic theory is studied and applied to simulate complex multi-scale flows. On the basis of using the uncoupling technique on molecular movements and collisions in the DSMC method, the gas-kinetic finite difference scheme is constructed by extending and applying the unsteady time-splitting method from computational fluid dynamics, which directly solves the discrete velocity distribution functions. The Gauss-type discrete velocity numerical quadrature technique for flows with different Mach numbers is developed to evaluate the macroscopic flow parameters in the physical space. As a result, the gas-kinetic numerical algorithm is established for studying the three-dimensional complex flows with high Mach numbers from rarefied transition to continuum regimes. On the basis of the parallel characteristics of the respective independent discrete velocity points in the discretized velocity space, a parallel strategy suitable for the gas-kinetic numerical method is investigated and, then, the HPF (High Performance Fortran) parallel programming software is developed for simulating gas dynamical problems covering the full spectrum of flow regimes. To illustrate the feasibility of the present gas-kinetic numerical method and simulate gas transport phenomena covering various flow regimes, the gas flows around three-dimensional spheres and spacecraft-like shapes with different Knudsen numbers and Mach numbers are investigated to validate the accuracy of the numerical methods through HPF parallel computing. The computational results determine the flow fields in high resolution and agree well with the theoretical and experimental data. This computing, in practice, has confirmed that the present gas-kinetic algorithm probably provides a promising approach for resolving hypersonic aerothermodynamic problems with the complete spectrum of flow regimes from the gas-kinetic point of view for solving the mesoscopic Boltzmann model equation.  相似文献   

13.
A Langmuir slip model combined with continuum-based compressible Navier-Stokes equations is proposed and implemented for the purpose of analyzing complex microscale gas flows. For our model, an efficient compressible pressure correction algorithm based on an unstructured grid is developed and modified to be applicable to low Reynolds number slip flows in microgeometries. Gaseous slip flows in a uniform microchannel and compressible flow at backward-facing step are computed for the assessment of the adequacy of the method. Separated flow in a T-shaped micro-manifold is also simulated for the Reynolds number ranging from 10 to 60. In the uniform microchannel flow, the pressure increases nonlinearly in Langmuir slip model as the Knudsen number increases, while it drops nonlinearly in Maxwell slip model. The results from Langmuir slip model have been found to be more compatible with physics. From all the simulation cases, nonlinear behavior owing to both compressibility and rarefaction clearly appears in terms of streamwise velocity, pressure profiles and even reattachment length in the separation-associated flows. These results show that the suggested pressure correction method along with the Langmuir slip model may effectively simulate complex microscale gas flows, thereby offering a sound theoretical and numerical basis and an inexpensive computation procedure.  相似文献   

14.
In this paper, a modified compressible Reynolds equation for micro/meso scale gas foil journal bearings considering first order slip and effective viscosity under rarefied flow conditions is presented. The influence of rarefaction effect on the load carrying capacity, attitude angle, speed and frequency dependent stiffness and damping coefficients, modal impedance, natural frequencies and unbalance response is studied. From numerical analysis, it has been found that there is significant change in all the static and dynamic characteristics predicted by the no-slip model and model with effective viscosity. There is also a considerable difference between the values predicted by a model with effective viscosity and a model without effective viscosity. For a given eccentricity ratio, the influence of effective viscosity on load carrying capacity and attitude angle is more significant for the typical operating speed range of micro/meso scale gas turbines. The influence of effective viscosity decreases with increase in compliance of bearing structure. Similarly, the influence of effective viscosity on frequency dependent stiffness and damping coefficients increases with excitation frequency ratio. Significant change in natural frequency, modal impedance and unbalance response for model with no slip and slip with effective viscosity is observed. The influence of effective viscosity is found to be significant with increase in Knudsen number.  相似文献   

15.
In this paper, the pressure-driven flow in a long micro-channel is studied via a lattice Boltzmann equation (LBE) method. With the inclusion of the gas–wall collision effects, the LBE is able to capture the flow behaviors in the transition regime. The numerical results are compared with available data of other methods. Furthermore, the effects of rarefaction and compressibility on the deviation of the pressure distribution from the linear one are also investigated.  相似文献   

16.
A review on slip models for gas microflows   总被引:1,自引:0,他引:1  
  相似文献   

17.
Despite the enormous scientific and technological importance of micro-channel gas flows, the understanding of these flows, by classical fluid mechanics, remains incomplete including the prediction of flow rates. In this paper, we revisit the problem of micro-channel compressible gas flows and show that the axial diffusion of mass engendered by the density (pressure) gradient becomes increasingly significant with increased Knudsen number compared to the pressure driven convection. The present theoretical treatment is based on a recently proposed modification (Durst et al. in Proceeding of the international symposium on turbulence, heat and mass transfer, Dubrovnik, 3–18 September, pp 25–29, 2006) of the Navier–Stokes equations that include the diffusion of mass caused by the density and temperature gradients. The theoretical predictions using the modified Navier–Stokes equations are found to be in good agreement with the available experimental data spanning the continuum, transition and free-molecular (Knudsen) flow regimes, without invoking the concept of Maxwellian wall-slip boundary condition. The simple theory also results in excellent agreement with the results of linearized Boltzmann equations and Direct Simulation Monte Carlo (DSMC) method. Finally, the theory explains the Knudsen minimum and suggests the design of future micro-channel flow experiments and their employment to complete the present days understanding of micro-channel flows.  相似文献   

18.
The analytical solution of a two-dimensional, isothermal, compressible gas flow in a slider microbearing is presented. A higher order accuracy of the solution is achieved by applying the boundary condition of Kn 2 order for the velocity slip on the wall, together with the momentum equation of the same order (known as the Burnett equation). The analytical solution is obtained by the perturbation analysis. The order of all terms in continuum and momentum equations and in boundary conditions is evaluated by incorporating the exact relation between the Mach, Reynolds and Knudsen numbers in the modelling procedure. Low Mach number flows in microbearing with slowly varying cross-sections are considered, and it is shown that under these conditions the Burnett equation has the same form as the Navier–Stokes equation. Obtained analytical results for pressure distribution, load capacity and velocity field are compared with numerical solutions of the Boltzmann equation and some semi-analytical results, and excellent agreement is achieved. The model presented in this paper is a useful tool for the prediction of flow conditions in the microbearings. Also, its results are the benchmark test for the verifications of various numerical procedures.  相似文献   

19.
The tangential momentum accommodation coefficient (TMAC) was investigated experimentally from the mass flow rate through a single microtube under the slip flow and the early part of the transition regime. The measurements were carried out by the constant-volume method under the mean Knudsen number smaller than 0.3, which is based on the mean pressure of the inlet and the outlet of the microtube, to apply the second-order slip boundary condition. To measure TMACs on various materials, quite large microtube was employed, which require the reduction in leakage. TMAC was obtained from the slip coefficient determined by the relation of the mass flow rate to the mean Knudsen number. The obtained mass flow rate was well explained by the theoretical equation. TMACs of deactivated-fused silica with argon, nitrogen, and oxygen were measured, showing the tangential momentum was not accommodated completely to the surface, and the values showed good agreement with previous studies. From the comparison between microtubes with different inner diameter, it is showed that TMAC is determined mainly by gas species and surface material.  相似文献   

20.
A three dimensional molecular dynamics method was used to study the effect of different geometries for rarefied gas flows in nanochannels. Argon molecules have been used. The velocity profiles in the channel were obtained and analyzed with three different channel geometries: a circular, a rectangular (square), and a slit channel. A channel width of 50 nm was used for the simulation. It was found that when using the same driving force, the maximum velocity of the flow increases when the geometry changes in the order from circular to rectangular to slit geometry, where the latter becomes 2–2.5 times as large compared with either the rectangular or circular channel. For Kn larger than 1.0, the rectangular channel showed a similar maximum and slip velocity as the circular channel while the velocity profile was qualitatively similar to the slit channel. The effect of different Knudsen numbers on the velocity profiles was also investigated. We found that for Kn larger than 2–3, the Knudsen number has a relatively small influence on the slip velocity for circular channels and rectangular channels. The effect of the accommodation coefficient on the average flow velocity for all three geometries was studied and expressed as an allometric equation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号