首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distributed mobility management (DMM) was an effective method to solve the mobile address handover.Therefore,it was considered to be a technology that can be applied to satellite network mobility management.A distributed mobile management scheme which based on software definition network (SDN) was proposed to solve the traffic redirection problem in satellite network.Different from the traditional DMM application scenario which was network-based or terminal-based,the SDN-DMM scheme implements location management and address handover in SDN controllers.Therefore,SDN-based satellite network distributed mobile management scheme can realize packet forwarding path optimization compared with traditional scheme,and it shows significant advantages in managementcost and traffic management.  相似文献   

2.
This paper presents the design and development of a new network virtualization scheme to support multitenant datacenter networking (MT‐DCN) based on software‐defined networking (SDN) technologies. Effective multitenancy supports are essential and challenging for datacenter networking designs. In this study, we propose a new network virtualization architecture framework for efficient packet forwarding in MT‐DCN. Traditionally, an internet host uses IP addresses for both host identification and location information, which causes mobile IP problems whenever the host is moved from one IP subnet to another. Unfortunately, virtual machine (VM) mobility is inevitable for cloud computing in datacenters for reasons such as server consolidation and network traffic flow optimization. To solve the problems, we decouple VM identification and location information with two independent values neither by IP addresses. We redefine the semantics of Ethernet MAC address to embed tenant ID information to the MAC address field without violating its original functionality. We also replace traditional Layer2/Layer3 two‐stage routing schemes (MAC/IP) with an all‐Layer2 packet forwarding mechanism that combines MAC addresses (for VM identification and forwarding in local server groups under an edge switch gateway) and multiprotocol label switching (MPLS) labels (for packet transportation between edge switch gateways across the core label switching network connecting all the edge gateways). To accommodate conventional IP packet architecture in a multitenant environment, SDN (OpenFlow) technology is used to handle all this complex network traffics. We verified the design concepts by a simple system prototype in which all the major system components were implemented. Based on the prototype system, we evaluated packet forwarding efficiency under the proposed network architecture and compared it with conventional IP subnet routing approaches. We also evaluated the incurred packet processing overhead caused by each of the packet routing components.  相似文献   

3.
The emerging software‐defined networking (SDN) paradigm introduces new opportunities to improve network performance due to the flexibility and programmability provided by a logically centralized element named controller. However, a rapid adoption of the full SDN architecture is difficult in the short term due to economic and technical reasons. This paper faces the SDN nodes replacement problem during the transition from traditional IP networks to fully deployed SDN networks. Six different replacement methods are proposed to select the most appropriate set of traditional IP nodes to be upgraded to SDN‐enabled switches at a particular transition stage. To show the effectiveness of the proposed methods, they have been applied on an optimization problem currently studied by the research community: the power consumption problem. An integer linear programming formulation is presented to solve it and a genetic algorithm is evaluated through simulations on realistic network topologies. Results highlight that energy‐efficiency in hybrid IP/SDN networks can be significantly improved by only replacing a reduced number of IP nodes.  相似文献   

4.

Software-defined networking (SDN) is a new approach that overcomes the obstacles which are faced by conventional networking architecture. The core idea of SDN is to separate the control plane from the data plane. This idea improves the network in many ways, such as efficient utilization of resources, better management of the network, reduced cost, innovation with new evolution, and many others. To manage all these changes, there is a great need for an efficient controller to improve the utilization of resources for the better performance of the network. The controller is also responsible for the analysis and monitoring of real-time data traffic. There is a great need for a high-performance controller in networking industries, data centres, academia, and research due to the tremendous growth of distributed processing-based real time applications. Therefore, it is crucial to investigate the performance of an open-source controller to provide efficient traffic routing, leading to improved utilization of resources for the enhanced performance metrics of the network. The paper presents an implementation of SDN architecture using an open-source RYU SDN controller for the network traffic analysis. The proposed work evaluates the performance of SDN architecture based custom network topology for a node to node performance parameters such as bandwidth, throughput and roundtrip time, etc. The simulation results exhibit an improved performance of the proposed work in comparison to the existing default network topology for SDN.

  相似文献   

5.
The use of wireless body area networks (WBANs) in healthcare applications has made it convenient to monitor both health personnel and patient status continuously in real time through wearable wireless sensor nodes. However, the heterogeneous and complex network structure of WBANs has some disadvantages in terms of control and management. The software‐defined network (SDN) approach is a promising technology that defines a new design and management approach for network communications. In order to create more flexible and dynamic network structures in WBANs, this study uses the SDN approach. For this, a WBAN architecture based on the SDN approach with a new energy‐aware routing algorithm for healthcare architecture is proposed. To develop a more flexible architecture, a controller that manages all HUBs is designed. The proposed architecture is modeled using the Riverbed Modeler software for performance analysis. The simulation results show that the SDN‐based structure meets the service quality requirements and shows superior performance in terms of energy consumption, throughput, successful transmission rate, and delay parameters according to the traditional routing approach.  相似文献   

6.
The current IP mobility protocols are called centralized mobility management (CMM) solutions, in which all data traffic and management signaling messages must be forwarded to an anchor entity. In some vehicle scenarios, vehicles may move as a group from one roadside unit to another (i.e., after traffic lights or traffic jams). This causes data traffic and exchanged mobility messages to peak at the anchor entity and, consequently, affects the network performance. A new design paradigm aimed at addressing the anchor entity issue is called distributed mobility management (DMM); it is an IETF proposal that is still being actively discussed by the IETF DMM working group. Nevertheless, network-based DMM is designed based on the well-known network-based CMM protocol Proxy Mobile IPv6 (PMIPv6). There is no significant difference between network-based DMM and PMIPv6 in terms of handover latency and packet loss. Because vehicles change their roadside unit frequently in this context, the IP addresses of mobile users (MUs) require fast IP handover management to configure a new IP address without disrupting ongoing sessions. Thus, this paper proposes the Fast handover for network-based DMM (FDMM) based on the Fast Handover for PMIPv6 (PFMIPv6). Several modifications to PFMIPv6 are required to adapt this protocol to DMM. This paper specifies the necessary extensions to support the scenario in which an MU has old IP flows and hence has multiple anchor entities. In addition, the analytic expressions required to evaluate and compare the handover performance of the proposed FDMM and the IETF network-based DMM have been derived. The numerical results show that FDMM outperforms the IETF network-based DMM in terms of handover latency, session recovery and packet loss at the cost of some extra signaling.  相似文献   

7.
Over the last few years, mobility management in the Internet has been one of the most active fields in communications. The recent increasing mobile traffic demand is having an important impact on the design of mobile networks and some limitations are arising from traditional network deployments. In order to deal with this new scenario, mobility management network architectures are being redesigned towards a more distributed operation. In this paper, we introduce DM3 (distributed mobility management MPLS), a fully distributed architecture designed to track efficiently the mobility of users in the current paradigm of evolving mobile IP networks. In DM3 architecture, several nodes are distributed in the MPLS‐based access network and the mobile nodes are served by a close‐by mobility anchor. With this operation, we reduce the routing and registration update costs, and provide a low handoff latency with a minimal packet loss rate. Analytical and experimental results are presented to justify the benefits of our proposed architecture. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
胡爱琼 《移动信息》2024,46(1):47-49,52
文中主要探索了基于OpenFlow的软件定义网络(SDN)路由技术,旨在优化和提高网络管理效率。通过深入解读SDN的核心构架、OpenFlow协议的关键组成,并将其与传统路由进行对比,发现SDN提供了一个更加灵活和集中的网络管理机制。在路由决策、性能优化和故障恢复上,基于OpenFlow的SDN明显优于传统方法。由此可见,基于OpenFlow的软件定义网络路由技术不仅可以大大提高网络的运行效率,还能简化网络管理流程,为未来的网络技术发展指明方向。  相似文献   

9.
Energy consumption is one of the most important design constraints when building a wireless sensor and actuator network since each device in the network has a limited battery capacity, and prolonging the lifetime of the network depends on saving energy. Overcoming this challenge requires a smart and reconfigurable network energy management strategy. The Software‐Defined Networking (SDN) paradigm aims at building a flexible and dynamic network structure, especially in wireless sensor networks. In this study, we propose an SDN‐enabled wireless sensor and actuator network architecture that has a new routing discovery mechanism. To build a flexible and energy‐efficient network structure, a new routing decision approach that uses a fuzzy‐based Dijkstra's algorithm is developed in the study. The proposed architecture can change the existing path during data transmission, which is the key property of our model and is achieved through the adoption of the SDN approach. All the components and algorithms of the proposed system are modeled and simulated using the Riverbed Modeler software for more realistic performance evaluation. The results indicate that the proposed SDN‐enabled structure with fuzzy‐based Dijkstra's algorithm outperforms the one using the regular Dijkstra's and the ZigBee‐based counterpart, in terms of the energy consumption ratio, and the proposed architecture can provide an effective cluster routing while prolonging the network lifetime.  相似文献   

10.
吴宇彤  周金和 《电讯技术》2021,61(2):137-142
传统的TCP/IP路由以IP地址为中心,信息传输效率低下,难以满足网络用户需求.信息中心网络(Information-Centric Network,ICN)开始成为研究热点,ICN以内容为中心,可以高效传输信息.为了利用软件定义网络(Software Defined Network,SDN)和分段路由技术的优势,提高...  相似文献   

11.
史衍伟  曹争 《通信学报》2014,35(Z1):15-81
SDN网络与传统IP网络的互联机制是当前学术界的研究热点,但现有解决方案并不能适用于所有应用场景。为此提出了一个基于OSPF协议的IMISA架构,在一个包含 SDN 子网(基于OpenFlow)和IP子网的自治系统范围内,通过给SDN控制器添加一个OSPF路由模块,利用OSPF协议交换各自的网络信息,最终实现了2种网络的互联。  相似文献   

12.
The evolved packet core (EPC) network is the mobile network standardized by the 3rd Generation Partnership Project and represents the recent evolution of mobile networks providing high‐speed data rates and on‐demand connectivity services. Software‐defined networking (SDN) is recently gaining momentum in network research as a new generation networking technique. An SDN‐based EPC is expected to introduce gains to the EPC control plane architecture in terms of simplified, and perhaps even software‐based, vendor independent infrastructure nodes. In this paper, we propose a novel SDN‐based EPC architecture along with the protocol‐level detailed implementation and provide a mechanism for identifying information fields exchanged between SDN‐EPC entities that maintains correct functionality with minimal impact on the conventional design. Furthermore, we present the first comprehensive network performance evaluation for the SDN‐based EPC versus the conventional EPC and provide a comparative analysis of 2 networks performances identifying potential bottlenecks and performance issues. The evaluation focuses on 2 network control operations, namely, the S1‐handover and registration operations, taking into account several factors, and assessing performance metrics such as end‐to‐end delay (E2ED) for completion of the respective control operation, and EPC nodes utilization figures.  相似文献   

13.
Mobility management and handover for a seamless connection are among all‐time challenges of wireless networks. Software‐defined networking (SDN) has opened new horizons toward research by adding intelligence in edge networks while decoupling the control and data planes. The flexibility and centralized nature of SDN further improve the handover decision algorithms. In this paper, we have improved the network performance with respect to the number of handovers and the handover delay by applying an LTE‐SDN architecture and a novel handover decision algorithm based on predicting the future locations of a moving vehicle. The proposed algorithm decouples the handover procedure into two phases of preparation and execution. In the preparation phase, which occurs in the control plane, the handover decision and resource allocation take place, and in the execution phase, handover gets executed similar to the LTE architecture. The results of our research indicate that our proposed LTE‐SDN performance is improved with respect to the number of handovers, handover delay, and signaling overhead by 24%, 16%, and 20%, respectively. On the other hand, average Reference Signal Received Quality (RSRQ) value is decreased by 4% as a tradeoff for the improvements gained.  相似文献   

14.
Software‐defined networking (SDN) acts as a centralized management unit, especially in a network with devices that operate under the transport layer of the OSI model. However, when a network with layer 7 middleboxes (MBs) is considered, current SDNs exhibit limitations. As such, to achieve a real‐centralized management unit, a new architecture is required that decouples the data and control planes of all network devices. In this report, we propose such a complementary architecture to the current SDN in which SDN‐enabled MBs are included along with contemporary SDN‐enabled switches. The management unit of this architecture improves network performance and reduces routing cost by considering the status of the MBs during flow forwarding. This unit consists of the following two parts: an SDN controller (SDNC) and a middlebox controller (MBC). The latter selects the best MBs for each flow and the former determines the best path according to its routing algorithm and provides information via the MBC. The results show that the proposed architecture improved performance because the utilization of all network devices including MBs is manageable.  相似文献   

15.
Mobile operators currently encounter numerous challenges caused by the centralized architecture of mobile networks. A single mobility anchor placed at the network core maintains the entire mobility and data traffic forwarding in the existing centralized mobility management (CMM) solutions. The CMM approach confronts several issues in scalability, reliability, signaling overhead, and non-optimal routing due to the increasing number of mobile devices and the volume of data traffic. To overcome these issues, a new architectural paradigm called distributed mobility management (DMM) is proposed to flatten the network architecture by moving mobility anchors closer to users and separating the control and data planes at the network edge. Two DMM solutions are developed: partially distributed mobility management (partial-DMM) in which only the data plane is distributed and fully distributed mobility management (full-DMM) where both control and data planes are distributed, which can be potentially applied for future mobile networks. This paper presents a network-based full-DMM scheme that was developed and implemented using NS2 network simulator by removing any dedicated centralized mobility anchor from the architecture. Extensive simulations were conducted to evaluate and compare the performance of the full-DMM model with that of the traditional CMM model. The simulation results show that the full-DMM provides lower end-to-end delay performance than CMM. However, the full-DMM generates higher handover latency and packet loss than CMM at high MN speeds. Moreover, simulation results clearly show the benefits of dynamic mobility activation in the full-DMM model.  相似文献   

16.
Recently, various efforts from both industry and academia are being performed on specifying distributed mobility management (DMM). One of the early and promising network-based DMM proposals is dynamic mobility anchoring (DMA). This paper carries out a performance analysis on DMA in terms of mobility costs and handover performance, comparing it with proxy mobile IPv6 (PMIPv6). For the cost analysis, we consider signaling, processing, data packet delivery, and tunneling costs. For the handover analysis, we consider handover latency, handover failure probability, and handover packet loss as performance metrics. The impacts of several parameters on the mobility costs and handover performance are investigated. The results show that DMA outperforms PMIPv6 significantly in optimizing the network resources consumption as well as the mobility management performance.  相似文献   

17.
The existing WLAN architecture does not have the capabilities to leverage the wired and wireless broadband-accessed network control for the Inter-WLAN mobility. This paper presents a broadband-facilitated inter-WLAN mobility system architecture including its realization with the wired and wireless broadband-accessed network control for the WLAN mobility management. The proposed broadband-based inter-WLAN mobility management concept has changed the notion of the traditional WLAN mobility. Secondly, an implementation of the distribution system with broadband-accessed central network control for the IEEE 802.11 inter-WLAN mobility along with its management protocol is presented. In addition, this paper provides the modification to the enhanced IAPP protocol signaling messaging required for the broadband-facilitated WLAN mobility management. Finally, simulation experimental results for the proposed inter-WLAN communications architecture’s performance vs. WLAN mobility management performance employing standard and optimized MIP are presented. We believe that the proposed architecture would greatly enhance the Inter-WLAN IP mobility performance. This paper serves as a foundation work for future research in inter-WLAN mobility management using broadband, wired and wireless that integrates high-speed wide area network and WLANs.  相似文献   

18.
SummarySoftware‐defined network (SDN) is constructed by decoupling the control and data plane from the forwarding devices. The control plane operations are managed by centralized or distributed controllers, and the data plane operation is managed by respective forwarding devices. SDN provides an easy and efficient management solutions for software‐programmed consolidated middlebox in virtual machines. Additionally, SDN with centralized controller faces complications like scalability, network bottle neck, and single point failure. In this study, a stateful inspection firewall acts as a middlebox in distributed SDN‐controlled network. The controller is programmed with a failure detection and recovery mechanism to provide reliability and redundancy and enhance the overall performance of the network. The objective of stateful firewall on SDN architecture is to secure the network by monitoring the current connections and maintain its state information until the connection is active. In this paper, the performance of firewall‐enabled SDN with centralized and distributed controllers are measured, compared, and analyzed. The experiments are done using POX controller, and the results are verified by Mininet network emulation tool. The results show that the stateful firewall‐enabled SDN with distributed controller network improves the security, reliability, availability, and overall performance of the network. In the proposed SDN, average network throughput is improved by 43%, average network delay is reduced by 4%, average channel utilization is increased by 40%, average network overhead is reduced by 26%, and average network response time is reduced by 23%.  相似文献   

19.
Mobility management is required to ensure the session continuity for multiple Internet Protocol‐enabled devices onboard a satellite that hands off between ground stations. Network Mobility (NEMO) can efficiently manage the mobility of multiple Internet Protocol‐enabled devices that are connected as a mobile network. However, existing mobility management solutions for satellite networks are unable to route through intermediate satellites links when a direct connection with a ground station is lost. We proposed an architecture of NEMO in satellite networks with routing through multiple satellite links using nesting, where a mobile network connects to another mobile network. However, NEMO Basic Support Protocol can be inefficient in satellite networks because of poor nesting formation leading to the routing loop, inefficient routes, and overloaded links. We extended NEMO Basic Support Protocol for the efficient use in satellite networks by augmenting it with a decision criteria for the nesting. Results verify that the extended protocol ensures loop‐free and continuous connection despite the loss of direct connection to the ground and provides an insight on how to form the nested NEMO to avoid overloading. The architecture and the extended NEMO protocol can be used for the efficient and continuous transfer of data from satellite networks to the ground. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
RAN的全IP化是UMTS实现全IP架构过程的一部分。在RAN中,最重要的功能之一就是移动性管理。原有的基于ATM的移动性管理技术在全IP的RAN架构中并不适用。在分析全IP的RAN架构中对移动性管理的新的要求基础上,提出了结合MPLS技术和移动IP技术来解决移动性管理的新的开放的应用架构,并且描述了在这种应用架构下移动IP的协议过程;简要分析了这种应用架构带来的好处,提出还需要改进的地方和实现的技术难点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号