首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molybdenum disulfide (MoS2) is a promising electrode material for electrochemical energy storage owing to its high theoretical specific capacity and fascinating 2D layered structure. However, its sluggish kinetics for ionic diffusion and charge transfer limits its practical applications. Here, a promising strategy is reported for enhancing the Na+‐ion charge storage kinetics of MoS2 for supercapacitors. In this strategy, electrical conductivity is enhanced and the diffusion barrier of Na+ ion is lowered by a facile phosphorus‐doping treatment. Density functional theory results reveal that the lowest energy barrier of dilute Na‐vacancy diffusion on P‐doped MoS2 (0.11 eV) is considerably lower than that on pure MoS2 (0.19 eV), thereby signifying a prominent rate performance at high Na intercalation stages upon P‐doping. Moreover, the Na‐vacancy diffusion coefficient of the P‐doped MoS2 at room temperatures can be enhanced substantially by approximately two orders of magnitude (10?6–10?4 cm2 s?1) compared with pure MoS2. Finally, the quasi‐solid‐state asymmetrical supercapacitor assembled with P‐doped MoS2 and MnO2, as the positive and negative electrode materials, respectively, exhibits an ultrahigh energy density of 67.4 W h kg?1 at 850 W kg?1 and excellent cycling stability with 93.4% capacitance retention after 5000 cycles at 8 A g?1.  相似文献   

2.
Supercapacitors have received increasing interest as energy storage devices due to their rapid charge–discharge rates, high power densities, and high durability. In this work, novel conjugated microporous polymer (CMP) networks are presented for supercapacitor energy storage, namely 3D polyaminoanthraquinone (PAQ) networks synthesized via Buchwald–Hartwig coupling between 2,6‐diaminoanthraquinone and aryl bromides. PAQs exhibit surface areas up to 600 m2 g?1, good dispersibility in polar solvents, and can be processed to flexible electrodes. The PAQs exhibit a three‐electrode specific capacitance of 576 F g?1 in 0.5 m H2SO4 at a current of 1 A g?1 retaining 80–85% capacitances and nearly 100% Coulombic efficiencies (95–98%) upon 6000 cycles at a current density of 2 A g?1. Asymmetric two‐electrode supercapacitors assembled by PAQs show a capacitance of 168 F g?1 of total electrode materials, an energy density of 60 Wh kg?1 at a power density of 1300 W kg?1, and a wide working potential window (0–1.6 V). The asymmetric supercapacitors show Coulombic efficiencies up to 97% and can retain 95.5% of initial capacitance undergo 2000 cycles. This work thus presents novel promising CMP networks for charge energy storage.  相似文献   

3.
The high‐performance electrode materials with tuned surface and interface structure and functionalities are highly demanded for advanced supercapacitors. A novel strategy is presented to conFigure high‐stacking‐density, superior‐roughness nickel manganese layered double hydroxide (LDH) bridged by vertically aligned graphene (VG) with nickel foam (NF) as the conductive collector, yielding the LDH‐NF@VG hybrids for asymmetric supercapacitors. The VG nanosheets provide numerous electron transfer channels for quick redox reactions, and well‐developed open structure for fast mass transport. Moreover, the high‐stacking‐density LDH grown and assembled on VG nanosheets result in a superior hydrophilicity derived from the tuned nano/microstructures, especially microroughness. Such a high stacking density with abundant active sites and superior wettability can be easily accessed by aqueous electrolytes. Benefitting from the above features, the LDH‐NF@VG can deliver a high capacitance of 2920 F g?1 at a current density of 2 A g?1, and the asymmetric supercapacitor with the LDH‐NF@VG as positive electrode and activated carbon as negative electrode can deliver a high energy density of 56.8 Wh kg?1 at a power density of 260 W kg?1, with a high specific capacitance retention rate of 87% even after 10 000 cycles.  相似文献   

4.
Flexible supercapacitors have shown enormous potential for portable electronic devices. Herein, hierarchical 3D all‐carbon electrode materials are prepared by assembling N‐doped graphene quantum dots (N‐GQDs) on carbonized MOF materials (cZIF‐8) interweaved with carbon nanotubes (CNTs) for flexible all‐solid‐state supercapacitors. In this ternary electrode, cZIF‐8 provides a large accessible surface area, CNTs act as the electrical conductive network, and N‐GQDs serve as highly pseudocapactive materials. Due to the synergistic effect and hierarchical assembly of these components, N‐GQD@cZIF‐8/CNT electrodes exhibit a high specific capacitance of 540 F g?1 at 0.5 A g?1 in a 1 m H2SO4 electrolyte and excellent cycle stability with 90.9% capacity retention over 8000 cycles. The assembled supercapacitor possesses an energy density of 18.75 Wh kg?1 with a power density of 108.7 W kg?1. Meanwhile, three supercapacitors connected in series can power light‐emitting diodes for 20 min. All‐solid‐state N‐GQD@cZIF‐8/CNT flexible supercapacitor exhibits an energy density of 14 Wh kg?1 with a power density of 89.3 W kg?1, while the capacitance retention after 5000 cycles reaches 82%. This work provides an effective way to construct novel electrode materials with high energy storage density as well as good cycling performance and power density for high‐performance energy storage devices via the rational design.  相似文献   

5.
Metal selenides have great potential for electrochemical energy storage, but are relatively scarce investigated. Herein, a novel hollow core‐branch CoSe2 nanoarray on carbon cloth is designed by a facile selenization reaction of predesigned CoO nanocones. And the electrochemical reaction mechanism of CoSe2 in supercapacitor is studied in detail for the first time. Compared with CoO, the hollow core‐branch CoSe2 has both larger specific surface area and higher electrical conductivity. When tested as a supercapacitor positive electrode, the CoSe2 delivers a high specific capacitance of 759.5 F g?1 at 1 mA cm?2, which is much larger than that of CoO nanocones (319.5 F g?1). In addition, the CoSe2 electrode exhibits excellent cycling stability in that a capacitance retention of 94.5% can be maintained after 5000 charge–discharge cycles at 5 mA cm?2. An asymmetric supercapacitor using the CoSe2 as cathode and an N‐doped carbon nanowall as anode is further assembled, which show a high energy density of 32.2 Wh kg?1 at a power density of 1914.7 W kg?1, and maintains 24.9 Wh kg?1 when power density increased to 7354.8 W kg?1. Moreover, the CoSe2 electrode also exhibits better oxygen evolution reaction activity than that of CoO.  相似文献   

6.
Nickel/cobalt hydroxide is a promising battery‐type electrode material for supercapacitors. However, its low cycle stability hinders further applications. Herein, Ni0.7Co0.3(OH)2 core–shell microspheres exhibiting extreme‐prolonged cycling life are successfully synthesized, employing Ni‐Co‐metal–organic framework (MOF) as the precursor/template and a specific hydrolysis strategy. The Ni‐Co‐MOF and KOH aqueous solution are separated and heated to 120 °C before mixing, rather than mixing before heating. Through this hydrolysis strategy, no MOF residual exists in the product, contributing to close stacking of the hydroxide nanoflakes to generate Ni0.7Co0.3(OH)2 microspheres with a robust core–shell structure. The electrode material exhibits high specific capacity (945 C g?1 at 0.5 A g?1) and unprecedented cycling performance (100% after 10 000 cycles). The fabricated asymmetric supercapacitor delivers an energy density of 40.14 Wh kg?1 at a power density of 400.56 W kg?1 and excellent cycling stability (100% after 20 000 cycles). As far as is known, it is the best cycling performance for pure Ni/Co(OH)2.  相似文献   

7.
The development of biomass‐based energy storage devices is an emerging trend to reduce the ever‐increasing consumption of non‐renewable resources. Here, nitrogen‐doped carbonized bacterial cellulose (CBC‐N) nanofibers are obtained by one‐step carbonization of polyaniline coated bacterial cellulose (BC) nanofibers, which not only display excellent capacitive performance as the supercapacitor electrode, but also act as 3D bio‐template for further deposition of ultrathin nickel‐cobalt layered double hydroxide (Ni‐Co LDH) nanosheets. The as‐obtained CBC‐N@LDH composite electrodes exhibit significantly enhanced specific capacitance (1949.5 F g?1 at a discharge current density of 1 A g?1, based on active materials), high capacitance retention of 54.7% even at a high discharge current density of 10 A g?1 and excellent cycling stability of 74.4% retention after 5000 cycles. Furthermore, asymmetric supercapacitors (ASCs) are constructed using CBC‐N@LDH composites as positive electrode materials and CBC‐N nanofibers as negative electrode materials. By virtue of the intrinsic pseudocapacitive characteristics of CBC‐N@LDH composites and 3D nitrogen‐doped carbon nanofiber networks, the developed ASC exhibits high energy density of 36.3 Wh kg?1 at the power density of 800.2 W kg?1. Therefore, this work presents a novel protocol for the large‐scale production of biomass‐derived high‐performance electrode materials in practical supercapacitor applications.  相似文献   

8.
Porous hierarchical architectures of few‐layer MoS2 nanosheets dispersed in carbon matrix are prepared by a microwave‐hydrothermal method followed by annealing treatment via using glucose as C source and structure‐directing agent and (NH4)2MoS4 as both Mo and S sources. It is found that the morphology and size of the secondary building units (SBUs), the size and layer number of MoS2 nanosheets as well as the distribution of MoS2 nanosheets in carbon matrix, can be effectively controlled by simply adjusting the molar ratio of (NH4)2MoS4 to glucose, leading to the materials with a low charge–transfer resistance, many electrochemical active sites and a robust structure for an outstanding energy storage performance including a high specific capacitance (589 F g−1 at 0.5 A g−1), a good rate capability (364 F g−1 at 20 A g−1), and an excellent cycling stability (retention 104% after 2000 cycles) for application in supercapacitors. The exceptional rate capability endows the electrode with a high energy density of 72.7 Wh kg−1 and a high power density of 12.0 kW kg−1 simultaneously. This work presents a facile and scalable approach for synthesizing novel heterostructures of MoS2‐based electrode materials with an enhanced rate capability and cyclability for potential application in supercapacitor.  相似文献   

9.
Cost‐effective synthesis of carbon nanospheres with a desirable mesoporous network for diversified energy storage applications remains a challenge. Herein, a direct templating strategy is developed to fabricate monodispersed N‐doped mesoporous carbon nanospheres (NMCSs) with an average particle size of 100 nm, a pore diameter of 4 nm, and a specific area of 1093 m2 g?1. Hexadecyl trimethyl ammonium bromide and tetraethyl orthosilicate not only play key roles in the evolution of mesopores but also guide the assembly of phenolic resins to generate carbon nanospheres. Benefiting from the high surface area and optimum mesopore structure, NMCSs deliver a large specific capacitance up to 433 F g?1 in 1 m H2SO4. The NMCS electrodes–based symmetric sandwich supercapacitor has an output voltage of 1.4 V in polyvinyl alcohol/H2SO4 gel electrolyte and delivers an energy density of 10.9 Wh kg?1 at a power density of 14014.5 W kg?1. Notably, NMCSs can be directly applied through the mask‐assisted casting technique by a doctor blade to fabricate micro‐supercapacitors. The micro‐supercapacitors exhibit excellent mechanical flexibility, long‐term stability, and reliable power output.  相似文献   

10.
Hierarchical nanostructure, high electrical conductivity, extraordinary specific surface area, and unique porous architecture are essential properties in energy storage and conversion studies. A new type of hierarchical 3D cobalt encapsulated Fe3O4 nanosphere is successfully developed on N‐graphene sheet (Co?Fe3O4 NS@NG) hybrid with unique nanostructure by simple, scalable, and efficient solvothermal technique. When applied as an electrode material for supercapacitors, hierarchical Co?Fe3O4 NS@NG hybrid shows an ultrahigh specific capacitance (775 F g?1 at a current density of 1 A g?1) with exceptional rate capability (475 F g?1 at current density of 50 A g?1), and admirable cycling performance (97.1% capacitance retention after 10 000 cycles). Furthermore, the fabricated Co?Fe3O4 NS@NG//CoMnO3@NG asymmetric supercapacitor (ASC) device exhibits a high energy density of 89.1 Wh kg?1 at power density of 0.901 kW kg?1, and outstanding cycling performance (89.3% capacitance retention after 10 000 cycles). Such eminent electrochemical properties of the Co?Fe3O4 NS@NG are due to the high electrical conductivity, ultrahigh surface area, and unique porous architecture. This research first proposes hierarchical Co?Fe3O4 NS@NG hybrid as an ultrafast charge?discharge anode material for the ASC device, that holds great potential for the development of high‐performance energy storage devices.  相似文献   

11.

In this reported study, novel multiple dimensional ZIF-67/rGO/NiPc composite materials were prepared for supercapacitors. The electrochemical test showed that the ZIF-67/rGO/NiPc electrode achieved a remarkable specific capacitance of 860 F g?1 at a current density of 1 A g?1, which was superior to that of the rGO/NiPc and ZIF-67/rGO electrodes. An asymmetric supercapacitor based on ZIF-67/rGO/NiPc//activated carbon exhibited a high specific capacitance of 200.67 F g?1 and an extraordinary energy density of 62.7 Wh kg?1 at a corresponding power density of 750 W kg?1. In addition, the device demonstrated 94.6% capacitance retention after 5000 cycles. The assembled asymmetric supercapacitors could easily powered a green light-emitting diode. This work revealed a promising research route for the rational construction of multiple dimensioned high-performance electrodes materials for use in new energy storage devices.

  相似文献   

12.
The use of free‐standing carbon‐based hybrids plays a crucial role to help fulfil ever‐increasing energy storage demands, but is greatly hindered by the limited number of active sites for fast charge adsorption/desorption processes. Herein, an efficient strategy is demonstrated for making defect‐rich bismuth sulfides in combination with surface nitrogen‐doped carbon nanofibers (dr‐Bi2S3/S‐NCNF) as flexible free‐standing electrodes for asymmetric supercapacitors. The dr‐Bi2S3/S‐NCNF composite exhibits superior electrochemical performances with an enhanced specific capacitance of 466 F g?1 at a discharge current density of 1 A g?1. The high performance of dr‐Bi2S3/S‐NCNF electrodes originates from its hierarchical structure of nitrogen‐doped carbon nanofibers with well‐anchored defect‐rich bismuth sulfides nanostructures. As modeled by density functional theory calculation, the dr‐Bi2S3/S‐NCNF electrodes exhibit a reduced OH? adsorption energy of ‐3.15 eV, compared with that (–3.06 eV) of defect‐free bismuth sulfides/surface nitrogen‐doped carbon nanofiber (df‐Bi2S3/S‐NCNF). An asymmetric supercapacitor is further fabricated by utilizing dr‐Bi2S3/S‐NCNF hybrid as the negative electrode and S‐NCNF as the positive electrode. This composite exhibits a high energy density of 22.2 Wh kg?1 at a power density of 677.3 W kg?1. This work demonstrates a feasible strategy to construct advanced metal sulfide‐based free‐standing electrodes by incorporating defect‐rich structures using surface engineering principles.  相似文献   

13.
The voltage limit for aqueous asymmetric supercapacitors is usually 2 V, which impedes further improvement in energy density. Here, high Na content Birnessite Na0.5MnO2 nanosheet assembled nanowall arrays are in situ formed on carbon cloth via electrochemical oxidation. It is interesting to find that the electrode potential window for Na0.5MnO2 nanowall arrays can be extended to 0–1.3 V (vs Ag/AgCl) with significantly increased specific capacitance up to 366 F g?1. The extended potential window for the Na0.5MnO2 electrode provides the opportunity to further increase the cell voltage of aqueous asymmetric supercapacitors beyond 2 V. To construct the asymmetric supercapacitor, carbon‐coated Fe3O4 nanorod arrays are synthesized as the anode and can stably work in a negative potential window of ?1.3 to 0 V (vs Ag/AgCl). For the first time, a 2.6 V aqueous asymmetric supercapacitor is demonstrated by using Na0.5MnO2 nanowall arrays as the cathode and carbon‐coated Fe3O4 nanorod arrays as the anode. In particular, the 2.6 V Na0.5MnO2//Fe3O4@C asymmetric supercapacitor exhibits a large energy density of up to 81 Wh kg?1 as well as excellent rate capability and cycle performance, outperforming previously reported MnO2‐based supercapacitors. This work provides new opportunities for developing high‐voltage aqueous asymmetric supercapacitors with further increased energy density.  相似文献   

14.
Nitrogen‐doped graphene (NG) with wrinkled and bubble‐like texture is fabricated by a thermal treatment. Especially, a novel sonication‐assisted pretreatment with nitric acid is used to further oxidize graphene oxide and its binding with melamine molecules. There are many bubble‐like nanoflakes with a dimension of about 10 nm appeared on the undulated graphene nanosheets. The bubble‐like texture provides more active sites for effective ion transport and reversible capacitive behavior. The specific surface area of NG (5.03 at% N) can reach up to 438.7 m2 g?1, and the NG electrode demonstrates high specific capacitance (481 F g?1 at 1 A g?1, four times higher than reduced graphene oxide electrode (127.5 F g?1)), superior cycle stability (the capacitance retention of 98.9% in 2 m KOH and 99.2% in 1 m H2SO4 after 8000 cycles), and excellent energy density (42.8 Wh kg?1 at power density of 500 W kg?1 in 2 m KOH aqueous electrolyte). The results indicate the potential use of NG as graphene‐based electrode material for energy storage devices.  相似文献   

15.
Supercapacitors suffer from lack of energy density and impulse the energy density limit, so a new class of hybrid electrode materials with promising architectures is strongly desirable. Here, the rational design of a 3D hierarchical sandwich Co9S8/α‐MnS@N–C@MoS2 nanowire architecture is achieved during the hydrothermal sulphurization reaction by the conversion of binary mesoporous metal oxide core to corresponding individual metal sulphides core along with the formation of outer metal sulphide shell at the same time. Benefiting from the 3D hierarchical sandwich architecture, Co9S8/α‐MnS@N–C@MoS2 electrode exhibits enhanced electrochemical performance with high specific capacity/capacitance of 306 mA h g?1/1938 F g?1 at 1 A g?1, and excellent cycling stability with a specific capacity retention of 86.9% after 10 000 cycles at 10 A g?1. Moreover, the fabricated asymmetric supercapacitor device using Co9S8/α‐MnS@N–C@MoS2 as the positive electrode and nitrogen doped graphene as the negative electrode demonstrates high energy density of 64.2 Wh kg?1 at 729.2 W kg?1, and a promising energy density of 23.5 Wh kg?1 is still attained at a high power density of 11 300 W kg?1. The hybrid electrode with 3D hierarchical sandwich architecture promotes enhanced energy density with excellent cyclic stability for energy storage.  相似文献   

16.
Co3O4/nitrogen‐doped carbon hollow spheres (Co3O4/NHCSs) with hierarchical structures are synthesized by virtue of a hydrothermal method and subsequent calcination treatment. NHCSs, as a hard template, can aid the generation of Co3O4 nanosheets on its surface; while SiO2 spheres, as a sacrificed‐template, can be dissolved in the process. The prepared Co3O4/NHCS composites are investigated as the electrode active material. This composite exhibits an enhanced performance than Co3O4 itself. A higher specific capacitance of 581 F g?1 at 1 A g?1 and a higher rate performance of 91.6% retention at 20 A g?1 are achieved, better than Co3O4 nanorods (318 F g?1 at 1 A g?1 and 67.1% retention at 20 A g?1). In addition, the composite is employed as a positive electrode to fabricate an asymmetric supercapacitor. The device can deliver a high energy density of 34.5 Wh kg?1 at the power density of 753 W kg?1 and display a desirable cycling stability. All of these attractive results make the unique hierarchical Co3O4/NHCS core–shell structure a promising electrode material for high‐performance supercapacitors.  相似文献   

17.
Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS2 is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni3S4@MoS2) is prepared by a facile one‐pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni3S4@amorphous MoS2 nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g?1 at 2 A g?1 and a good capacitance retention of 90.7% after 3000 cycles at 10 A g?1. This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors.  相似文献   

18.
The development of a negative electrode for supercapacitors is a critical challenge for the next‐generation of energy‐storage devices. Herein, two new electrodes formed by the coordination polymers [Ni(itmb)4(HPMo12O40)]·2H2O ( 1 ) and [Zn(itmb)3(H2O)(HPMo12O40)]·4H2O ( 2 ) (itmb = 1‐(imidazo‐1‐ly)‐4‐(1,2,4‐triazol‐1‐ylmethyl)benzene), synthesized by a simple hydrothermal method, are described. Compounds 1 and 2 show high capacitances of 477.9 and 890.2 F g?1, respectively. An asymmetric supercapacitor device assembled using 2 which has novel water‐assisted proton channels as negative electrode and active carbon as positive electrode shows ultrahigh energy density and power density of 23.4 W h kg?1 and 3864.4 W kg?1, respectively. Moreover, the ability to feed a red light emitting diode (LED) also demonstrates the feasibility for practical use. The results allow a better elucidation of the storage mechanism in polyoxometalate‐based coordination polymers and provide a promising direction for exploring novel negative materials for new‐generation high‐performance supercapacitors.  相似文献   

19.
Nanostructured graphene electrodes generally have a low density, which can limit the volumetric performance for energy storage devices. The liquid‐phase mild reduction process of graphene oxide sheets is combined with the continuous aerosol densification process to produce high‐density graphene agglomerates in the form of microspheres. The produced graphene assembly shows the cabbage‐like morphology with a high density of 0.75 g cm?3. In spite of such high density, the cabbage‐like graphene microspheres have narrow‐ranged mesopores and a high surface area. The cabbage‐like graphene microsphere exhibits both high gravimetric and volumetric energy densities due to the optimized microstructure, which shows a high gravimetric capacitance of 177 F g?1 and volumetric capacitance of 117 F cm?3 in supercapacitors. As a cathode for lithium‐ion capacitors, the cabbage‐like graphene delivers a reversible capacity of ≈176 mAh g?1. The stacking‐control approach provides a new pathway to control the microstructure of the graphene assembly and corresponding charge storage characteristics for energy storage applications.  相似文献   

20.
Rapid charging and discharging supercapacitors are promising alternative energy storage systems for applications such as portable electronics and electric vehicles. Integration of pseudocapacitive metal oxides with single‐structured materials has received a lot of attention recently due to their superior electrochemical performance. In order to realize high energy‐density supercapacitors, a simple and scalable method is developed to fabricate a graphene/MWNT/MnO2 nanowire (GMM) hybrid nanostructured foam, via a two‐step process. The 3D few‐layer graphene/MWNT (GM) architecture is grown on foamed metal foils (nickel foam) via ambient pressure chemical vapor deposition. Hydrothermally synthesized α‐MnO2 nanowires are conformally coated onto the GM foam by a simple bath deposition. The as‐prepared hierarchical GMM foam yields a monographical graphene foam conformally covered with an intertwined, densely packed CNT/MnO2 nanowire nanocomposite network. Symmetrical electrochemical capacitors (ECs) based on GMM foam electrodes show an extended operational voltage window of 1.6 V in aqueous electrolyte. A superior energy density of 391.7 Wh kg?1 is obtained for the supercapacitor based on the GMM foam, which is much higher than ECs based on GM foam only (39.72 Wh kg?1). A high specific capacitance (1108.79 F g?1) and power density (799.84 kW kg?1) are also achieved. Moreover, the great capacitance retention (97.94%) after 13 000 charge–discharge cycles and high current handability demonstrate the high stability of the electrodes of the supercapacitor. These excellent performances enable the innovative 3D hierarchical GMM foam to serve as EC electrodes, resulting in energy‐storage devices with high stability and power density in neutral aqueous electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号