首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Semiconductor nanocrystals, the so‐called quantum dots (QDs), exhibit versatile optical and electrical properties. However, QDs possess high density of surface defects/traps due to the high surface‐to‐volume ratio, which act as nonradiative carrier recombination centers within the QDs, thereby deteriorating the overall solar cell performance. The surface passivation of QDs through the growth of an outer shell of different materials/compositions called “core/shell QDs” has proven to be an effective approach to reduce the surface defects and confinement potential, which can enable the broadening of the absorption spectrum, accelerate the carrier transfer, and reduce exciton recombination loss. Here, the recent research developments in the tailoring of the structure of core/shell QDs to tune exciton dynamics so as to improve solar cell performance are summarized. The role of band alignment of core and shell materials, core size, shell thickness/compositions, and interface engineering of core/thick shell called “giant” QDs on electron–hole spatial separation, carrier transport, and confinement potential, before and after grafting on the carrier scavengers (semiconductor/electrolyte), is described. Then, the solar cell performance based on core/shell QDs is introduced. Finally, an outlook for the rational design of core/shell QDs is provided, which can further promote the development of high‐efficiency and stable QD sensitized solar cells.  相似文献   

2.
Organic-inorganic hybrid film using conjugated materials and quantum dots (QDs) are of great interest for solution-processed optoelectronic devices, including photovoltaics (PVs). However, it is still challenging to fabricate conductive hybrid films to maximize their PV performance. Herein, for the first time, superior PV performance of hybrid solar cells consisting of CsPbI3 perovskite QDs and Y6 series non-fullerene molecules is demonstrated and further highlights their importance on hybrid device design. In specific, a hybrid active layer is developed using CsPbI3 QDs and non-fullerene molecules, enabling a type-II energy alignment for efficient charge transfer and extraction. Additionally, the non-fullerene molecules can well passivate the QDs, reducing surface defects and energetic disorder. The champion CsPbI3 QD/Y6-F hybrid device has a record-high efficiency of 15.05% for QD/organic hybrid PV devices, paving a new way to construct solution-processable hybrid film for efficient optoelectronic devices.  相似文献   

3.
Colloidal quantum dots (QDs) are widely studied due to their promising optoelectronic properties. This study explores the application of specially designed and synthesized “giant” core/shell CdSe/(CdS)x QDs with variable CdS shell thickness, while keeping the core size at 1.65 nm, as a highly efficient and stable light harvester for QD sensitized solar cells (QDSCs). The comparative study demonstrates that the photovoltaic performance of QDSCs can be significantly enhanced by optimizing the CdS shell thickness. The highest photoconversion efficiency (PCE) of 3.01% is obtained at optimum CdS shell thickness ≈1.96 nm. To further improve the PCE and fully highlight the effect of core/shell QDs interface engineering, a CdSex S1?x interfacial alloyed layer is introduced between CdSe core and CdS shell. The resulting alloyed CdSe/(CdSex S1?x )5/(CdS)1 core/shell QD‐based QDSCs yield a maximum PCE of 6.86%, thanks to favorable stepwise electronic band alignment and improved electron transfer rate with the incorporation of CdSex S1?x interfacial layer with respect to CdSe/(CdS)6 core/shell. In addition, QDSCs based on “giant” core/CdS‐shell or alloyed core/shell QDs exhibit excellent long‐term stability with respect to bare CdSe‐based QDSCs. The giant core/shell QDs interface engineering methodology offers a new path to improve PCE and the long‐term stability of liquid junction QDSCs.  相似文献   

4.
Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single-junction solar cells by harvesting the low-energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovoltaic is limited by the restrictive relation between open-circuit voltages (VOC) and short circuit current densities (JSC), caused by the contradiction between surface passivation and electronic coupling of QD solids. Here, a strategy is developed to decouple this restriction via epitaxially coating a thin PbS shell over the PbSe QDs (PbSe/PbS QDs) combined with in situ halide passivation. The strong electronic coupling from the PbSe core gives rise to significant carrier delocalization, which guarantees effective carrier transport. Benefited from the protection of PbS shell and in situ halide passivation, excellent trap-state control of QDs is eventually achieved after the ligand exchange. By a fine control of the PbS shell thickness, outstanding IR JSC of 6.38 mA cm−2 and IR VOC of 0.347 V are simultaneously achieved under the 1100 nm-filtered solar illumination, providing a new route to unfreeze the trade-off between VOC and JSC limited by the photoactive layer with a given bandgap.  相似文献   

5.
Nanocrystals, called semiconductor quantum dots (QDs), contain excitons that are three-dimensionally bound. QDs exhibit a discontinuous electronic energy level structure that is similar to that of atoms and exhibit a distinct quantum confinement effect. As a result, QDs have unique electrical, optical, and physical characteristics that can be used in a variety of optoelectronic device applications, including solar cells. In this review article, the stable and controllable synthesis of QD materials is outlined for upscaling solar cells, including material development and device performance enhancement. It includes a systematic variety of device structures for the fabrication of solar cells, such as QD, hybrid QD/organic, hybrid QD/inorganic, perovskite QD, and hybrid 2D MXene QD/perovskite. The mechanisms for the improvement of stability by QD treatment are examined. For example, the 2D MXene QD and/or Cu1.8S nanocrystal doping significantly increases the long-term light and ambient stability of perovskite solar cells, resulting from improved perovskite crystallization, reduced hole transport layer (HTL) aggregation and crystallization of films, and reduced UV-induced photocatalytic activity of the electron transport layer (ETL). For the advancement of QD solar cells and their interaction with various materials, the conclusions from this review are crucial. Finally, future prospects for the development of QD solar cells as well as current challenges are discussed.  相似文献   

6.
Quasi type‐II PbSe/PbS quantum dots (QDs) are employed in a solid state high efficiency QD/TiO2 heterojunction solar cell. The QDs are deposited using layer‐by‐layer deposition on a half‐micrometer‐thick anatase TiO2 nanosheet film with (001) exposed facets. Theoretical calculations show that the carriers in PbSe/PbS quasi type‐II QDs are delocalized over the entire core/shell structure, which results in better QD film conductivity compared to PbSe QDs. Moreover, PbS shell permits better stability and facile electron injection from the QDs to the TiO2 nanosheets. To complete the electrical circuit of the solar cell, a Au film is evaporated as a back contact on top of the QDs. This PbSe/PbS QD/TiO2 heterojunction solar cell produces a light to electric power conversion efficiency (η) of 4% with short circuit photocurrent (Jsc) of 17.3 mA/cm2. This report demonstrates highly efficient core/shell near infrared QDs in a QD/TiO2 heterojunction solar cell.  相似文献   

7.
核/壳结构ZnS:Mn/ZnS量子点光发射增强研究   总被引:1,自引:1,他引:0  
利用水溶性前驱体材料在水性介质中制备了ZnS:Mn和ZnS:Mn/ZnS核/壳结构量子点(QDs,quantum dots),并用X射线衍射(XRD)、光致发光(PL)对ZnS:Mn和ZnS:Mn/ZnS核/壳结构QDs的结构和发光性能进行研究.ZnS:Mn和ZnS:Mn/ZnS QDs XRD谱与标准谱吻合,根据De...  相似文献   

8.
Infrared solar cells that utilize low‐bandgap colloidal quantum dots (QDs) are promising devices to enhance the utilization of solar energy by expanding the harvested photons of common photovoltaics into the infrared region. However, the present synthesis of PbS QDs cannot produce highly efficient infrared solar cells. Here, a general synthesis is developed for low‐bandgap PbS QDs (0.65–1 eV) via cation exchange from ZnS nanorods (NRs). First, ZnS NRs are converted to superlattices with segregated PbS domains within each rod. Then, sulfur precursors are released via the dissolution of the ZnS NRs during the cation exchange, which promotes size focusing of PbS QDs. PbS QDs synthesized through this new method have the advantages of high monodispersity, ease‐of‐size control, in situ passivation of chloride, high stability, and a “clean” surface. Infrared solar cells based on these PbS QDs with different bandgaps are fabricated, using conventional ligand exchange and device structure. All of the devices produced in this manner show excellent performance, showcasing the high quality of the PbS QDs. The highest performance of infrared solar cells is achieved using ≈0.95 eV PbS QDs, exhibiting an efficiency of 10.0% under AM 1.5 solar illumination, a perovskite‐filtered efficiency of 4.2%, and a silicon‐filtered efficiency of 1.1%.  相似文献   

9.
The energy disorder originating from quantum dot (QD) size and relevant solid film inhomogeneity is detrimental to the charge transport and efficiency of QD based solar cells. The emergence of halide perovskite QDs (PQDs) have attracted great attention as promising absorbers in QD photovoltaics. However, it is currently difficult in preparing structural uniform PQD film with homogenous energetic landscape, which is essential for highly reproducible and efficient solar cells. Herein, assisted by a bidentate ligand 2,5-thiophenedicarboxylic acid, a facile solution phase anchoring (SPA) strategy is first reported for design and preparation of all-inorganic CsPbI3 PQD film with reduced structure and energy disorder. The SPA can enhance PQD dispersion as well as dot-to-dot interaction, which is beneficial for fabricating high-quality PQD arrays and photovoltaic devices. The engineered CsPbI3 PQD solar cell exhibits enhanced reproducibility, and higher open–circuit voltage together with a champion efficiency of 16.14%, which is among the highest report to date. These results are believed to provide design principle of uniform PQDs for high-performance optoelectronic application.  相似文献   

10.
Metal halide perovskite-based optoelectronics has experienced an unprecedented development in the last decade, while further improvements of efficiency, stability, and economic gains of such devices require novel engineering concepts. The use of carbon nanoparticles as versatile auxiliary components of perovskite-based optoelectronic devices is one strategy that offers several advantages in this respect. In this review, first, a brief introduction is offered on metal halide perovskites and on the major performance characteristics of related optoelectronic devices. Then, the versatility and merits of different kinds of carbon nanoparticles, such as graphene quantum dots and carbon dots, are discussed. The tunability of their electronic properties is focused upon, their interactions with perovskite components are analyzed, and different strategies of their implementation in optoelectronic devices are introduced, which include solar cells, light-emitting diodes, luminescent solar concentrators, and photodetectors. It is shown how carbon nanoparticles influence charge carriers extraction and transport, promote perovskite crystallization, allow for efficient passivation, block ion migration, suppress hysteresis, enhance their environmental stability, and thus improve the performance of perovskite-based optoelectronic devices.  相似文献   

11.
Here, highly efficient and stable monolithic (2-terminal (2T)) perovskite/PbS quantum dots (QDs) tandem solar cells are reported, where the perovskite solar cell (PSC) acts as the front cell and the PbS QDs device with a narrow bandgap acts as the back cell. Specifically, ZnO nanowires (NWs) passivated by SnO2 are employed as an electron transporting layer for PSC front cell, leading to a single cell PSC with maximum power conversion efficiency (PCE) of 22.15%, which is the most efficient NWs-based PSCs in the literature. By surface passivation of PbS QDs by CdCl2, QD devices with an improved open-circuit voltage and a PCE of 8.46% (bandgap of QDs: 0.92 eV) are achieved. After proper optimization, 2T and 4T tandem devices with stabilized PCEs of 17.1% and 21.1% are achieved, respectively, where the 2T tandem device shows the highest efficiency reported in the literature for this design. Interestingly, the 2T tandem cell shows excellent operational stability over 500 h under continuous illumination with only 6% PCE loss. More importantly, this device without any packaging depicts impressive ambient stability (almost no change) after 70 days in an environment with controlled 65% relative humidity, thanks to the superior air stability of the PbS QDs.  相似文献   

12.
Colloidal lead sulfide (PbS) quantum dots (QDs), which possess quantum confinement effect and processing compatibility with perovskite, are regarded as an excellent material for optimizing perovskite solar cells (PSCs). However, the existing PSCs optimized by PbS QDs are still facing the challenges of poor performance of the charge transport layers, low utilization in the near-infrared (NIR) region, and unsuitable energy level alignment, which limit the improvement of power conversion efficiency (PCE). Herein, a synchronous optimization strategy is realized via simultaneously introducing PbS QDs into SnO2 electron transport layer and employing rare-earth-doped PbS QDs (Eu:PbS QDs) film with hydrophobic chain ligands as the NIR light-absorping layer and hole transport layer (HTL) of devices. PbS QDs effectively decrease the density of trap states by passivating defects. Eu:PbS QDs film with adjustable bandgap is employed as an absorption layer to broaden the NIR spectral absorption. The well-matched energy level between Eu:PbS QDs layer and perovskite layer implies efficient hole transfer at the interface. The successful synchronous optimization greatly elevates all photovoltaic parameters, reaching a maximum PCE of 23.27%. This PCE is the highest for PSCs utilizing PbS QDs material in recent years. The optimized PSCs retain long-term moisture and light stability.  相似文献   

13.
Graphitic carbon nitride (g‐C3N4) has been commonly used as photocatalyst with promising applications in visible‐light photocatalytic water‐splitting. Rare studies are reported in applying g‐C3N4 in polymer solar cells. Here g‐C3N4 is applied in bulk heterojunction (BHJ) polymer solar cells (PSCs) for the first time by doping solution‐processable g‐C3N4 quantum dots (C3N4 QDs) in the active layer, leading to a dramatic efficiency enhancement. Upon C3N4 QDs doping, power conversion efficiencies (PCEs) of the inverted BHJ‐PSC devices based on different active layers including poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PC61BM), poly(4,8‐bis‐alkyloxybenzo(l,2‐b:4,5‐b′)dithiophene‐2,6‐diylalt‐(alkyl thieno(3,4‐b)thiophene‐2‐carboxylate)‐2,6‐diyl):[6,6]‐phenyl C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM), and poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐3‐fluorothieno [3,4‐b]thiophene‐2‐carboxylate] (PTB7‐Th):PC71BM reach 4.23%, 6.36%, and 9.18%, which are enhanced by ≈17.5%, 11.6%, and 11.8%, respectively, compared to that of the reference (undoped) devices. The PCE enhancement of the C3N4 QDs doped BHJ‐PSC device is found to be primarily attributed to the increase of short‐circuit current (Jsc), and this is confirmed by external quantum efficiency (EQE) measurements. The effects of C3N4 QDs on the surface morphology, optical absorption and photoluminescence (PL) properties of the active layer film as well as the charge transport property of the device are investigated, revealing that the efficiency enhancement of the BHJ‐PSC devices upon C3N4 QDs doping is due to the conjunct effects including the improved interfacial contact between the active layer and the hole transport layer due to the increase of the roughness of the active layer film, the facilitated photoinduced electron transfer from the conducting polymer donor to fullerene acceptor, the improved conductivity of the active layer, and the improved charge (hole and electron) transport.  相似文献   

14.
General properties of III-V nitride-based quantum dots (QDs) are presented, with a special emphasis on InGaN/GaN QDs for visible optoelectronic devices. Stranski-Krastanov GaN/AlN dots are first discussed as a prototypical system. It is shown that the optical transition energies are governed by a giant quantum-confined Stark effect, which is the consequence of the presence of a large built-in internal electric field of several MV/cm. Then we move to InGaN/GaN QDs, reviewing the different fabrication approaches and their main optical properties. In particular, we focus on InGaN dots that are formed spontaneously by In composition fluctuations in InGaN quantum wells. Finally, some advantages and limitations of nitride laser diodes with active regions based on InGaN QDs are discussed, pointing out the requirements on dot uniformity and density in order to be able to exploit the expected quantum confinement effects in future devices.  相似文献   

15.
We have blended poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) with CdSe/ZnS core–shell quantum dots (QDs) as the active layer to produce organic solar cells (OSC). The size of the CdSe/ZnS core–shell QDs was determined to be about 4 nm using transmission electron microscopy. The OSC were characterized by measuring the absorption spectra, current–voltage characteristics, and external quantum efficiency (EQE) spectra. The samples doped with 0.5 wt.% CdSe/ZnS core–shell QDs exhibited higher power conversion efficiency (PCE) than samples doped with other concentrations of QDs. The PCE of the OSC increases from 2.10% to 2.38% due to an increase of the short circuit current density (J sc) from 6.00 mA/cm2 to 6.25 mA/cm2. The open circuit voltage (V oc) was kept constant when comparing OSC that were undoped and doped with 0.5 wt.% CdSe/ZnS core–shell QDs. These CdSe/ZnS core–shell QDs can increase optical absorption as well as provide extra exciton dissociation and additional electric pathways in hybrid OSC.  相似文献   

16.
We herein report the fabrication of highly fluorescent yellow emitting nanophosphors using CdSe/ZnS quantum dots (QDs) dispersed in polymethyl methacrylate (PMMA). The QDs were synthesised via a simple, non-phosphine and one pot synthetic method in the absence of an inert atmosphere. The as-prepared nanocrystallites were characterised by Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis) and photoluminescence spectroscopy, energy-dispersive spectroscopy (EDS), Raman spectroscopy, transmission electron microscopy (TEM) and high resolution TEM (HRTEM) microscopy. Optical analysis confirmed that the as-synthesised CdSe/ZnS QDs were of high quality with sharp absorption peaks, bright luminescence, narrow emission width and high PL quantum yield (up to 74%). The electron microscope images showed that the QDs are small and spherical in shape with narrow size distributions while the HRTEM micrograph confirmed the high crystallinity of the material. The Raman analysis of the QDs revealed the formation of core–shell structure and the energy dispersive spectroscopy confirmed the presence of the corresponding elements (i.e., Cd, Se, Zn and S). The dispersion of the core–shell QDs in PMMA matrix led to the red-shifting of the emission position from 393 nm in the neat PMMA to 592 nm in the nanocomposite. The fabricated highly fluorescent yellow emitting PMMA–CdSe/ZnS core–shell QDs polymer nanocomposite film display excellent optical properties without loss of luminescence. Furthermore, the as-synthesised organic soluble CdSe/ZnS QDs were successfully converted into highly water soluble QDs after ligand exchange with mercaptoundecanoic acid (MUA) without the loss of their emission properties. The simplicity of the method and the quality of the as-synthesised nanocomposite make it a promising material for the large scale fabrication of diverse optical devices.  相似文献   

17.
An attractive but challenging technology for high efficiency solar energy conversion is the intermediate band solar cell (IBSC), whose theoretical efficiency limit is 63%, yet which has so far failed to yield high efficiencies in practice. The most advanced IBSC technology is that based on quantum dots (QDs): the QD‐IBSC. In this paper, k·p calculations of photon absorption in the QDs are combined with a multi‐level detailed balance model. The model has been used to reproduce the measured quantum efficiency of a real QD‐IBSC and its temperature dependence. This allows the analysis of individual sub‐bandgap transition currents, which has as yet not been possible experimentally, yielding a deeper understanding of the failure of current QD‐IBSCs. Based on the agreement with experimental data, the model is believed to be realistic enough to evaluate future QD‐IBSC proposals.  相似文献   

18.
Chang Qing  Tan Hengyu  Meng Tianming 《红外与激光工程》2021,50(2):20200342-1-20200342-10
CdTe核壳结构半导体量子点具有特殊的非线性光学和超快动力学特性,使其在太阳能电池、光电子器件、生物标记和光纤传感领域有着广泛的应用前景。主要研究了6种不同核心尺寸、不同壳层厚度CdTe/CdS核壳结构半导体量子点的非线性光学和超快动力学特性。在波长400 nm、脉冲宽度130 fs激光脉冲作用下采用Z-Scan技术测量了样品的非线性吸收和非线性折射系数。实验结果表明,CdTe/CdS核壳结构量子点的壳层厚度影响非线性吸收和非线性折射特性,非线性吸收和非线性折射系数均随壳层厚度增加而增大。核心尺寸主要影响非线性吸收特性,非线性吸收系数随核心尺寸的增大而减小。在波长400 nm、脉冲宽度130 fs、频率1 kHz、单脉冲能量400 nJ条件下采用飞秒时间分辨瞬态吸收光谱技术测量了样品的超快动力学特性,得到了瞬态吸收光谱和超快动力学曲线。结果表明漂白信号上升过程时间随壳层厚度的增加而变大。快过程衰减时间随着壳层厚度的增加而变大,同时随着核心尺寸增加而增长;慢过程衰减时间随着壳层厚度的增加而变大。研究揭示了CdTe核壳结构量子点的核心尺寸、壳层厚度对非线性光学和超快动力学的影响规律,为核壳结构量子点的制备和光物理特性研究提供了理论基础。  相似文献   

19.
The one‐pot synthesis of core/shell quantum dots (QDs) represents an attractive alternative to conventional synthesis techniques, where the core CdSe QDs are first purified and then an epitaxial shell of the desired thickness is obtained by the slow addition of shell precursors to a solution of the purified QDs at high temperature. We have developed a one‐pot synthesis procedure involving the successive injection of deliberately selected core‐ and shell‐forming reagents at appropriate temperatures. Sub‐kilogram quantities of highly luminescent and monodisperse core/shell QDs with desirable optical properties (full width at half maximum of photoluminescence (PL) band is ca. 30 nm) have been produced by the sequential growth of the core and shell in a controlled manner. This one‐pot method has also been extended to form water‐soluble core/double‐shell CdSe/ZnSe/ZnS QDs exhibiting high PL efficiency and stability.  相似文献   

20.
Colloidal quantum dots (CQDs) are attractive materials for optoelectronic applications due to their low-cost, facile processing and size-dependent band-gap tunability. Solution-processed organic, inorganic and hybrid ligand-exchange techniques have been widely applied in QDs-based solar cells (QDSCs) to improve the power conversion efficiency (PCE). Till now, however, few have been reported to date the influence of post-synthesis annealing on the electrical characteristics of the PbS QDSCs. To reduce the influence of diffusion length, in this work, we present the thermal annealing treatment effect on the device performance of a typical heterojunction solar cell ITO/ZnO/PbS/Au with a relatively thinner active layer. By changing the annealing temperatures during the post-synthesis processes, we found its PCE increase from 3.26% to 4.52% after annealing at 140 °C, showing a 38.6% enhancement due to a dramatic enhancement of short circuit-current density (JSC) but a slight decrement of open-circuit voltage (VOC), and also, the mechanisms underneath for the enhanced performance are discussed in details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号