首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a dual‐polarized cross‐dipole antenna with wide beam and high isolation is designed and analyzed for base station. The proposed antenna consists of two planar cross dipoles with four square patches, two L‐shaped microstrip lines, two ground plates, four parasitic patches, and a reflector. The square patches are placed between the center of cross dipoles to couple with L‐shaped microstrip lines. By introducing the parasitic patches, the wide beam can be realized. The measured results show that the proposed antenna achieves an impedance bandwidth (|S11| < ?10 dB) of about 18.7% (1.9‐2.35 GHz) and an isolation better than 30 dB. A measured gain of 5.7 dBi and a half‐power beamwidth over 120° at the center frequency are obtained. Furthermore, the size of the proposed antenna is only 0.5λ0 × 0.5λ0 × 0.22λ0 (λ0 is wavelength at the center frequency).  相似文献   

2.
This article proposes ultra‐miniature microstrip patches with direct and electromagnetically coupled feeding mechanism for wireless communications at 10 GHz. Antenna size reduction is achieved here by loading a modified Minkowski fractal (type‐2) defected ground structure (MFDGS‐II) exactly beneath the radiating patch. The proposed method involves the selection of best DGS configuration through sensitivity analysis of the antenna structure. From different applications point of view, three different designs: a single layer direct fed patch and two electromagnetically coupled fed multi‐layered microstrip patch antennas are proposed here and designed with MFDGS‐II. The resonant frequencies of the antenna designs are reduced in a significant manner incorporating MFDGS‐II without any change in the physical size of the antenna. The prototypes of the proposed antennas are fabricated, and the performance parameters are measured. Compared with other existing structures, with a lower patch size of 0.20 λ0 × 0.15 λ0, the proposed single layered antenna with microstrip feed achieves a patch size reduction up to 67% and an overall volumetric reduction of 84%, respectively. Similarly, the proposed multi‐layered patch with proximity feed exhibits a maximum impedance bandwidth of 600 MHz and the aperture coupled fed patch has a realized gain of 6.2 dBi with radiation efficiency of 91% centered at 10 GHz. All three proposed compact antenna structures are best in three different aspects and have the potential to meet the practical requirements for X‐band portable wireless applications.  相似文献   

3.
This study introduces an ultrawideband unidirectional modified foursquare antenna. The antenna consists of two radiating loops and two truncated parasitic patches. A microstrip‐to‐stripline transition is used as a balun to feed the two radiating loops. A square cavity works as a reflector to realise a unidirectional radiation. This antenna has a total size of 0.56λL × 0.56λL × 0.15λLL: free space wavelength at lowest operating frequency). The measured results show that a broad operating bandwidth of 103.8% (2.67–8.44 GHz) for return loss being higher than 10 dB is achieved. Meanwhile, measured stable unidirectional radiation patterns with a gain (6.9–11.3 dBi) in +z direction, a front‐to‐back ratio better than 14.5 dB and low cross‐polarization level (相似文献   

4.
This article proposes a compact multiple‐input multiple‐output (MIMO) antenna with the electromagnetic band gap (EBG) structures for mobile terminals. The proposed MIMO antenna is composed of two radiation patches in which diagonal and folded microstrip lines are utilized to control the frequency bands. The radiation patch, one EBG structure and a rectangular‐shaped ground plane are etched on both sides of the antenna. The EBG structures have been employed for reducing the mutual coupling between the antenna elements. As a result of the effect of these structures, the mutual coupling between the two elements is reduced by less than ?30 dB. The proposed antenna is implemented on an FR4 substrate with dimensions 20 × 10 × 1 mm3. According to measured results, frequency ranges of 2.2 to 3.6 GHz and 5.1 to 5.9 GHz with S11 < ?10 dB and also 3.7 to 5 GHz and 8 to 12 GHz with S22 < ?10 dB have been obtained. Moreover, measured S12 and S21 with values of less than ?30 dB for both Ports have been realized. Additionally, the envelope correlation and radiation efficiency of the purposed antenna are less than 0.09 and more than 82%, respectively.  相似文献   

5.
This letter presents the experimental results of a novel planar antenna design which is synthesized using simplified composite left/right‐handed transmission‐line (SCRLH‐TL), which is a version of a conventional composite left/right handed‐transmission‐lines (CRLH‐TL), however, with the omission of shunt‐inductance in the unit‐cell. SCRLH‐TL exhibits a right‐handed response with nonlinear dispersion properties and a smooth Bloch‐impedance distribution. Arranged within the inner slot of the antenna are three smaller rectangular patch radiators. Each patch radiator is embedded with an E‐shaped notch, and located in the antenna conductor is a larger E‐shaped notch next to the 50‐Ω termination. The E‐shaped notches constitute SCRLH‐TL property. The gap in the slot between the smaller patches and the conductor next to the larger E‐shaped notch determines the impedance bandwidth of the antenna. The dimensions of the smaller patches determine the radiation characteristics of the antenna. The antenna is excited using a conductor‐backed coplanar waveguide transmission‐line. The antenna covers a bandwidth of 7.3 GHz between 0.7 GHz and 8GHz, which corresponds to 167.81%. In this band, the antenna resonates at 4.75 GHz and 7 GHz; the gain and radiation efficiency at these frequencies are 4 dBi—80% and 3.6 dBi—73%, respectively. The antenna's performance was validated through measurement. The antenna has dimensions of 0.0504λ0 × 0.0462λ0 × 0.0018λ0, where λ0 is free‐space wavelength at 700 MHz. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:217–225, 2016.  相似文献   

6.
A broadband high‐gain circularly polarized (CP) microstrip antenna operating in X band is proposed. The circular polarization property is achieved by rotating four narrow band linearly polarized (LP) microstrip patch elements in sequence. Since the conventional series‐parallel feed network is not conducive to the miniaturization of the array, a corresponding simplified feed network is designed to realize the four‐way equal power division and sequential 90° phase shift. With this feed network, the impedance bandwidth (IBW) of the CP array is greatly improved compared with that of the LP element, while maintaining a miniaturized size. Then, parasitic patches are introduced to enhance the axial ratio bandwidth (ARBW). A prototype of this antenna is fabricated and tested. The size of proposed antenna is 0.93λ0 × 0.93λ0 × 0.017λ0 (λ0 denotes the space wavelength corresponding to the center frequency 10.4 GHz). The measured 10‐dB IBW and 3‐dB ARBW are 13.6% (9.8‐11.23 GHz), 11.2% (9.9‐11.07 GHz) respectively, and peak gain in the overlapping band is 9.8 dBi.  相似文献   

7.
A broadband and compact coplanar waveguide (CPW) coupled‐fed metasurface (MS)‐based antenna for C‐band synthetic aperture radar (SAR) imaging application is proposed in this article, which is consisted of 16 uniform periodic square patches performed as radiators. The CPW feeding structure gives two following functions: (1) It excites an aperture coupling slot structure underneath the center of MS patch array. (2) It acts as a ground plane for the metasurface patch units. Different slots were investigated and eventually an hourglass‐shaped slot is applied to enhance bandwidth for imaging applications. A prototype with a dimension of 60 × 60 × 1.524 mm3 (1.1λ0 × 1.1λ0 × 0.03λ0) operating at the center frequency 5.5 GHz (f0) has been fabricated and measured to verify the design principle. This antenna has a measured impedance bandwidth of 12.4% from 5.14 to 5.82 GHz, a peak gain of 9.2 dBi and averaged gain of 7.2 dBi at broadside radiation. Microwave imaging experiments using the proposed antenna have been carried out and a good performance is achieved.  相似文献   

8.
This article proposes a mushroom‐shaped electromagnetic band gap (EBG) structure for the antenna parameter enhancement of low profile antennas in 5 to 15 GHz regime. Three different type antennas including a dipole antenna, a loop antenna, and a monopole antenna are designed for the corresponding operation band, and a 8 × 8 mushroom type EBG structure is designed to obtain exotic behavior for the enhancement of antenna parameters. Bandwidth, return loss (S11), main lobe gain, directivity, side lobe level, front to back ratio, and angular width of each antenna with EBG structure is examined with details. Besides, the designed EBG structure and antennas are fabricated and experimental results are obtained to support numerical ones. In addition, future study of the proposed EBG structure such as microwave imaging in cavity resonators is specified and discussed.  相似文献   

9.
In this article, a novel substrate integrated low‐profile dual‐band magneto‐electric (ME) dipole antenna is proposed. The entire antenna is constructed by four‐layer printed circuit boards (PCBs). Consequently, the height of the proposed antenna is decreased from 0.25λ0 to 0.11λ00 is the free‐space wavelength at 5.5 GHz). By introducing rectangular patches with different sizes as electric dipoles, dual operating bands are achieved. Meanwhile, for the purpose of improving the impedance matching at the lower frequency band, a pair of complementary split‐ring resonators (CSRRs) is etched on the larger rectangular patches. Moreover, the short walls composed of plated through holes operate as a magnetic dipole. The antenna is fed by an equivalent wideband microstrip‐to‐parallel stripline balun. The results show that the antenna obtains dual bandwidths of 4.31‐4.71 GHz (8.8%) and 5.07‐5.89 GHz (14.9%) with VSWR <2, which can be applied for C‐band and 5G WiFi. Over the dual operating bands, stable gain and unidirectional radiation patterns with low polarization and low back lobe are also obtained.  相似文献   

10.
A wide‐angle scanning circularly polarized (CP) leaky‐wave antenna (LWA) with suppressed side‐lobe levels (SLLs) is proposed, which can be a good candidate for future radar and wireless communication systems. The LWA consists of 12 cross slotted elliptical patch elements, which are fed by a microstrip spoof surface plasmon polariton (SSPP) line. Two fundamental modes of the patch array with two orthogonal polarizations can be excited by the electromagnetic coupling between the array and the SSPP line. By optimizing the elliptical eccentricity e and etching cross slots on the elliptical patch array, a 90° phase difference is introduced, and then, the CP radiation is realized. A tapered aperture field distribution is also realized by adjusting coupling intensities between the patch elements and the SSPP line, which is beneficial to reduce the SLLs. The electrical size of the LWA is 1.29λ0 × 6.02λ0 × 0.08λ0, where λ0 is air wavelength at 12.9 GHz (broadside direction). Both the simulated and measured results indicate that the CP operating band is 12.0 to 15.0 GHz. The proposed CP LWA scans continuously from ?14° to 38°. In the whole operating band, the axial ratios are less than 3 dB, and the SLLs are less than ?20 dB as well.  相似文献   

11.
A dipole‐type millimeter‐wave (mm‐wave) antenna with directional radiation characteristics is presented. A radiating patch structure composed of a dipole‐type radiation patch and a rectangular‐shaped parasitic patch are initially investigated to achieve a wider bandwidth. To further improve the operating bandwidth and to realize a directional radiation characteristic, this radiating patch structure is top‐loaded above a conducting cavity‐backed ground structure, which has a low profile (thickness of 3 mm). The measured results show that the proposed mm‐wave antenna can achieve a wide 10‐dB bandwidth of 51.3% (29.6‐50.0 GHz) and stable gain across the desired frequency range. Furthermore, good directional characteristics over the entire mm‐wave frequency band with a compact antenna size of 0.64λ40GHz × 0.91λ40GHz × 0.43λ40GHz are also realized. Hence, it is suitable for many small size wireless mm‐wave systems.  相似文献   

12.
A simple design of circularly polarized slot‐patch antenna array with broadband operation and compact size is presented in this article. The antenna element consists of a circular slot and a semicircular patch, which are etched on both sides of a substrate. For the gain and axial ratio (AR) bandwidth enhancement, its array antennas are implemented in a 2 × 2 arrangement and fed by a sequential‐phase feeding network. The final 2 × 2 antenna array prototype with compact lateral dimension of 0.8λL × 0.8λL (λL is the lowest frequency within AR bandwidth) yielded a measured impedance bandwidth of 103.83% (2.76‐8.72 GHz) and a measured AR bandwidth of 94.62% (2.45‐6.85 GHz). The peak gain values within the AR bandwidth are from 2.85 to 8.71 dBi. A good agreement between the simulated and measured results is achieved. This antenna array is suitable for multiservice wireless systems covering WiMAX, WLAN and C‐band applications such as satellite communications.  相似文献   

13.
A novel ultracompact two‐dimensional (2D) waveguide‐based metasurface is proposed herein and applied for the first time to reduce mutual coupling in antenna array for multiple‐input multiple‐output applications. The unit cell of the proposed 2D waveguide‐based metasurface is ultracompact (8.6 mm × 4.8 mm, equal to λ0/14.2 × λ0/25.5) mainly due to the symmetrical spiral lines etched on the ground. The metasurface exhibits a bandgap with two transmission zeros attributing to the negative permeability in the vicinity of magnetic resonance and the negative permittivity in the vicinity of electric resonance. Taking advantage of these two features, a microstrip antenna array is then designed, fabricated, and measured by embedding an 8 × 1 array of the well‐engineered 2D waveguide‐based metasurface elements between two closely spaced (9.2 mm, equal to λ0/13.3) H‐plane coupled rectangular patches. There is good agreement between the simulated and measured results, indicating that the metasurface effectively reduces antenna mutual coupling by more than 11.18 dB and improves forward gain. The proposed compact structure has one of the highest reported decoupling efficiencies among similar periodic structures with comparable dimensions. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:789–794, 2015.  相似文献   

14.
A compact monopolar microstrip patch antenna (MPA) with enhanced‐bandwidth is proposed. In order to achieve the miniaturized patch, the zeroth‐order mode of the MPA instead of its higher‐order modes is employed at first by loading the shorting pin around the center of the patch. After that, a L‐shaped microstrip line with a shorting pin is introduced at the periphery of the patch radiator to excite an additional non‐radiative mode for bandwidth enhancement. In final, the proposed MPA is fabricated and measured. The results illustrate that the antenna generates an enhanced‐bandwidth of about 4.1% ranging from 2.39 to 2.49 GHz, which is significantly larger than that of the traditional MPA around 1%. Meanwhile, the dimensions of the radiating patch are obviously decreased down due to the employment of zeroth‐order mode, which are kept as small as about 0.17 λ0 × 0.22 λ0 × 0.026 λ0 (λ0 is the free‐space wavelength).  相似文献   

15.
A dual‐band dual‐mode microstrip Yagi antenna with quasi‐end‐fire radiation patterns is proposed in this paper. It consists of five radiating patches driven by a single slot‐loaded patch placed in the middle. Meanwhile, two slot‐loaded parasitic patches are symmetrically located on two sides of the driven patch, respectively. In the lower band, the five patches involved resonate at TM01 mode. While in the upper band, all the patches resonate at TM02 mode. In order to ensure quasi‐end‐fire radiations in the both bands, four slots are symmetrically etched around the strongest surface currents of each patch resonating at TM02 mode. As a result, the resonant frequency of TM02 mode is decreased dramatically, while the resonant frequency of TM01 mode almost remains unchanged. With these arrangements, the separations between any two of the adjacent patches at their centers satisfy the requirements in design of the microstrip Yagi antenna in both bands, so as to realize the dual‐band dual‐mode microstrip Yagi antenna on a single‐layer substrate. Finally, an antenna prototype is fabricated and tested. The measured results reveal that the dual operating bands of 2.76~2.88 and 4.88~5.03 GHz for |S11| < ?10 dB are satisfactorily achieved. Most importantly, the proposed antenna can indeed realize the quasi‐end‐fire radiation patterns in dual operating bands.  相似文献   

16.
This article presents the Gui‐shaped Chinese character array antenna (GCCAA), which is loaded with the L‐shaped defect ground structure (LDGS) to improve isolation between the antennas. The GCCAA is obtained by arranging two Tu‐shaped antennas up and down. By etching a pair of LDGS on the ground, the direction of the coupling current is changed on the ground. Most importantly, the LDGS is not etched in the middle of the antenna elements, but loaded along the outer edge of the GCCAA, which not to destroy the appearance of the GCCAA and maintain the compact nature of the Chinese character. The measured results show that LDGS improves isolation from 15.4 to 37.4 dB when the antennas are placed with a 0.065 λ0 edge‐to‐edge distance. Meanwhile, it has little influence on reflection coefficient and radiation patterns. The decoupling technique is simple and straightforward which can be easy applied in Chinese character array antenna.  相似文献   

17.
In this article, a way based on using miniature patch cells has been proposed to increase gain and bandwidth of the waveguide slot antenna. In the presented approach, an array of 3 × 3 metal patches has been used as superstrate to create Fabry Perot theorem resonance cavity. The proposed high ‐ gain and simple antenna is composed of a conventional waveguide slot antenna with an extended broad wall, and an array of parasitic patches which are symmetrically placed over slot at a distance of about free ‐ space half wavelength. The slot has been created on a rectangular waveguide WR90 with 22.86 mm × 10.16 mm × 52.5 mm dimension, also extended wall dimension is 2λ0 (67.5 mm) × 3λ0 (107 mm). It has been shown that the proposed structure compared with the conventional waveguide slot antenna improves antenna peak gain from 6.5 to 16.5 dBi and, in the same time, antenna bandwidth from 11% to around 16.2%. More important advantage of the proposed antenna is that unlike to other Fabry Perot antenna with the same gain, there is not any dielectric material in the proposed structure. A prototype antenna was simulated, fabricated, and measured for verification.  相似文献   

18.
Two planar antennas based on metamaterial unit‐cells are designed, fabricated, and tested. The unit‐cell configuration consists of H‐shaped or T‐shaped slits and a grounded spiral. The slits essentially behave as series left‐handed capacitance and the spiral as a shunt left‐handed inductance. The unit‐cell was modeled and optimized using commercial 3D full‐wave electromagnetic simulation tools. Both antennas employ two unit‐cells, which are constructed on the Rogers RO4003 substrate with thickness of 0.8 mm and εr = 3.38. The size of H‐shaped and T‐shaped unit cell antennas are 0.06λ0 × 0.02λ0 × 0.003λ0 and 0.05λ0 × 0.02λ0 × 0.002λ0, respectively, where λ0 is the free–space wavelength. The measurements confirm the H–shaped and T–shaped unit‐cell antennas operate across 1.2–6.7 GHz and 1.1–6.85 GHz, respectively, for voltage standing wave ratio (VSWR) < 2, which correspond to fractional bandwidth of ~140% and ~ 145%, respectively. The H‐shaped unit‐cell antenna has gain and efficiency of 2–6.8 dBi and 50–86%, respectively, over its operational range. The T‐shaped unit‐cell antenna exhibits gain and efficiency of 2–7.1 dBi and 48–91%, respectively. The proposed antennas have specifications applicable for integration in UWB wireless communication systems and microwave portable devices. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:88–96, 2016.  相似文献   

19.
A miniaturized, loop resonators (LRs)‐loaded, circularly polarized (CP) multi‐dipole antenna with wide axial‐ratio (AR) beamwidth is proposed and demonstrated in this article. The radiator of this CP antenna consists of two pairs of parallel dipoles loaded with four LRs at their corners. By increasing the length of the LR, or decreasing the coupling space between the dipole and the LR, the effective length of the dipole can be lengthened significantly and thus the working frequency can be reduced without increasing the whole aperture size. As a result, a miniaturized radiator structure is completed. A feeding network consisting of a T‐shaped coupling feeding structure and four coplanar striplines having different lengths are specially designed to feed these dipoles with approximately the same magnitude and 90° phase quadrature. What is more, a cavity reflector is employed to achieve a unidirectional radiation with wide axial‐ratio beamwidth. The radiator of the proposed CP antenna has a small aperture size of only 0.34λ0 × 0.34λ0, where λ0 is the free space wavelength at the working frequency. Measured results are in a good agreement with the corresponding simulated counterparts. Especially, the experimental results show that the antenna has achieved a wide AR beamwidth of 182° and 174° at the center frequency in the xoz and yoz planes, respectively.  相似文献   

20.
A novel wideband crossed magneto‐electric (ME) dipole for circularly polarized (CP) radiation is proposed in this paper. The proposed antenna consists of a crossed dipole, four parasitic elements, and two pairs of folding metal plates (magnetic dipole). The parasitic elements and magnetic dipole are employed to enhance the axial ratio bandwidth (ARBW). The antenna size is 0.51λ0 × 0.51λ0 × 0.33λ0, where λ0 is the corresponding free‐space wavelength at the center frequency. A prototype antenna is fabricated and tested. The experiment results depict that the impedance bandwidth (IBW) for voltage standing wave ratio < 2 is 79.2% (2.5‐5.78 GHz) and the 3‐dB axial ratio bandwidth (ARBW) is 72.5% (2.7‐5.77 GHz). At the same time, good CP characteristics and stable symmetrical radiation patterns can be obtained across the operation bandwidth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号