首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
The identification of quantitative trait loci (QTL) and genes with influence on milk production traits has been the objective of various mapping studies in the last decade. In the centromeric region of Bos taurus autosome (BTA) 14, the acyl-CoA:diacylglycerol acyltransferase1 gene (DGAT1) has been identified as the most likely causative gene underlying a QTL for milk fat yield and content. Recently, a second polymorphism in the promoter of DGAT1 emerged as an additional source of variation. In this study, the frequencies and the effects of alleles at the DGAT1 K232A and at the DGAT1 promoter variable number of tandem repeat (VNTR) locus on BTA14, and of alleles at the CSN1S1 (αS1-casein-encoding gene) promoter on BTA6 in the German Angeln dairy cattle population were investigated. Analyzed traits were milk, fat, protein, lactose, and milk energy yield, fat, protein, lactose, and milk energy content and somatic cell score. The lysine variant of the DGAT1 K232A mutation showed significant effects for most of the milk production traits. A specific allele of the DGAT1 promoter VNTR showed significant effects on the traits lactose yield and content, milk energy content, and SCS compared with the other alleles. Additionally, a regulation mechanism between the DGAT1 K232A mutation and the DGAT1 promoter VNTR was found for fat yield and content, which could be caused by an upper physiological bound for the effects of the DGAT1 gene. At the CSN1S1 promoter, 2 of 4 alleles showed significant allele substitution effects on the milk yield traits.  相似文献   

2.
Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol synthesis in the mammary gland, and the corresponding gene has emerged as a strong candidate for the variation in milk fat percentage. In this study, the allele frequencies and effects of the DGAT1 K232A variants in the Swedish dairy breeds Swedish Red and Swedish Holstein were investigated. A total of 239 cows, 143 of the Swedish Red breed and 96 of the Swedish Holstein breed, in the experimental herd at the Swedish University of Agricultural Sciences were genotyped for the DGAT1 polymorphism. The Swedish Red cows in the herd belonged to 1 of 2 selection lines with high or low milk fat percentage, respectively, but with similar high total milk energy production. The frequency of the K variant was found to be significantly greater in the high-fat line than in the low-fat line. The average frequency of the K variant in the 2 lines of the Swedish Red cows was 0.09 compared with 0.12 among the Swedish Holstein cows. Mixed model analysis was used to estimate the effect of the DGAT1 K232A polymorphism based on 16,866 test-day records for milk production traits. In accordance with previous studies, the most pronounced effects were found for fat and protein percentages and milk yield; and the K variant was associated with an increase in milk fat and protein percentages but less milk yield compared with the A variant. Less pronounced effects were found for yields of fat and protein for which the K variant was associated with greater fat yield but less protein yield.  相似文献   

3.
A new, quick, and inexpensive method for detecting the bovine acyl-CoA:diacylglycerol acyltransferase1 (DGAT1) polymorphism (K232A) through tetra-primer amplification refractory mutation system by PCR (ARMS-PCR) was developed in the present investigation. The DGAT1 gene was recently identified as underlying variation in milk production traits. To date, PCR techniques such as PCR-RFLP have been used for detecting the DGAT1 K232A polymorphism, despite being expensive and laborious. The method proposed here, a tetra-primer ARMS-PCR, showed 100% sensitivity and specificity when compared with PCR-RFLP results obtained in a sample of 80 animals tested in a double-blind system. Our results suggest that the use of tetra-primer ARMS-PCR for DGAT1 K232A polymorphism genotyping could greatly reduce costs providing information for both research purposes and for dairy cattle breeders who perform DGAT1 genotyping for gene-assisted selection.  相似文献   

4.
The effects of genes are commonly estimated using random regression models based on test-day data and only give a general gene effect. Alternatively, lactation curve models can be used to estimate biological and environmental effects, or to predict missing test-day data and perform breeding value estimation. This study combines lactation curve models and estimation of gene effects to represent gene effects in different stages of lactation. The lactation curve models used were based on the Wood, Wilmink, and Ali and Schaeffer models. A random regression test-day model was used to compare estimated gene effects with the results of commonly used models. The well-characterized DGAT1 gene with known effects on milk yield, milk fat, and milk protein production was chosen to test this new approach in a Holstein-Friesian dairy cattle population. The K232A polymorphism and the promoter VNTR (variable number of tandem repeats) of the DGAT1 gene were used. All lactation curve models predicted the production curves sufficiently. Nevertheless, for predicting genotype effects, the Wilmink curve indicated the closest fit to the data. This study shows that the characteristic gene effects for DGAT1 genotypes occur after lactation d 40, which might be explained by a link to other genes affecting metabolic traits. Furthermore, allele substitution effects of allele K of the K232A locus showed that the typical effect of low milk and protein yield is due mainly to a lower overall production level, whereas the higher fat and protein content is reached by increased production toward its peak and fat yield is increased because of a higher production after this peak. Predicting gene effects with production curves gives better insight into the timeline of gene effects. This can be used to form genetic groups, in addition to feeding groups, for managing livestock populations in a more effective way.  相似文献   

5.
A quantitative trait locus (QTL) underlying different milk production traits has been identified with a high significance threshold value in the genomic region containing the acylCoA:diacylglycerol acyltransferase (DGAT1) gene, in the 3 main French dairy cattle breeds: French Holstein, Normande, and Montbéliarde. Previous studies have confirmed that the K232A polymorphism in DGAT1 is responsible for a major QTL underlying several milk production traits in Holstein dairy cattle and several other bovine breeds. In this study, we estimate the frequency of the 2 alternative alleles, K and A, of the K232A polymorphism in French Holstein, Normande, and Montbéliarde breeds. Although the K allele segregates in French Holstein and Normande breeds with a similar effect on production traits, the existence of additional mutations contributing to the observed QTL effect is strongly suggested in both breeds by the existence of sires heterozygous at the QTL but homozygous at the K232A polymorphism. One allele at a variable number of tandem repeats (VNTR) locus in the 5′ noncoding region of DGAT1 has been recently proposed as a putative causative variant. In our study, this marker was found to present a high mutation rate of 0.8% per gamete and per generation, making the allele diversity observed compatible with that expected under neutrality. Moreover, among the sires homozygous at the K232A polymorphism, no allele at the VNTR can fully explain their QTL status. Finally, no allele at the VNTR was found to be significantly associated with the fat percentage variation in the 3 breeds simultaneously after correction for the effect of the K232A polymorphism. Therefore, our results suggest the existence of at least one other causative polymorphism not yet described. Because the A allele is nearly fixed in the Montbéliarde breed, this breed represents an interesting model to identify and confirm other mutations that have a strong effect on milk production traits.  相似文献   

6.
7.
Recently, selective breeding was proposed as a means of changing the fatty acid composition of milk to improve its nutritional quality. Before implementing such breeding objectives, effects on other economically important traits should be investigated. The objectives of this study were to examine 1) the effect of milk fat composition, and 2) the effect of polymorphisms of DGAT1 and SCD1 genes on female fertility in commercial Dutch Holstein-Friesian cattle. Data on 1,745 first-lactation cows were analyzed by fitting linear mixed models. We found that higher concentrations of trans fatty acids within total milk fat negatively affected reproductive performance. Furthermore, results suggested a potential effect of the DGAT1 polymorphism on nonreturn rates for insemination 28 and 56 d after the first service. Our results can be used to assess the correlated effects of breeding for improved milk fat composition on reproduction, thereby allowing for better evaluation of breeding programs before implementation.  相似文献   

8.
Fatty acids (FA) are nonrandomly distributed within milk fat triacylglycerols (TAG). Moreover, the structure of milk fat TAG differs with feeding regimens. So far, nothing is known about the variation of milk fat TAG structure among individual cows. A deep understanding of the normal variation of TAG structures and the relationships between milk fat FA profile and its TAG structure could help to better control functional and compositional differences between milk fats from various sources and to increase the knowledge on milk fat synthesis. The focus of the present study was to determine the regiospecific TAG structure of individual samples of winter milk fat from Dutch Holstein-Friesian cows with a wide variation of FA profiles and with 2 diacylglycerol acyltransferase 1 (DGAT1) genotypes: DGAT1 K232A genotype AA and DGAT1 K232A genotype KK. From an initial set of 1,918 individual milk fat samples, 24 were selected. The selected samples had a wide range of FA composition and had either DGAT1 K232A genotype AA or KK. The structure analysis was done with a regiospecific approach. This analysis is based on the acyl degradation of TAG by a Grignard reagent and further isolation of sn-2 monoacylglycerols by thin-layer chromatography. An intra- and interpositional approach was used to study the structural variation. With the intrapositional approach, the amount of an FA at the secondary (sn-2) and primary (sn-1,3) positions was related to its total amount in the TAG. With the interpositional approach, the proportion of C8:0, C10:0, C14:1 cis-9, C16:1 cis-9, and C18:1 cis-9 at sn-2 was positively correlated with the amount of C16:0 in the triacylglycerol; in contrast, saturated C14:0, C16:0, and long-chain saturated FA (C14:0–C18:0) were negatively correlated. These observations suggest that the amount of long-chain saturated FA in TAG influences the positioning of other FA in the TAG. With an interpositional approach, the DGAT1 polymorphism had a significant effect on the proportional positioning of C16:0 at sn-2. These results provide a new direction to controlling functional and compositional differences between milk fats.  相似文献   

9.
The aim of the present study was to determine the allele frequencies of the diacylglycerol acyltransferase (DGAT1) K232A mutation in Italian Holstein bulls and to estimate the effect of the mutation on milk yield, composition, somatic cell score, and coagulation traits (rennet coagulation time and curd firmness). For this purpose, 349 Italian Holstein bulls were genotyped for the DGAT1 mutation on chromosome 14. Association analysis was performed by regressing the number of copies for the K allele on the deregressed estimated breeding value of the individual. Breeding values were calculated using field data routinely collected in Northeast Italy. The frequencies of the AA, KA, and KK genotypes were 59.6, 32.1, and 8.3%, respectively, and the minor allele frequency (K variant) was 24.7%. The K allele was significantly associated with greater fat yield and fat, protein, and casein percentages and with reduced protein:fat ratio. The association between the DGAT1 mutation and somatic cell score was not significant, whereas a favorable association between presence of the K allele and milk coagulation properties was found. Results from the present study confirmed the effect of the diallelic DGAT1 polymorphism K232A on milk production traits and, for the first time, provided evidence that this mutation also affects milk coagulation properties in the Italian Holstein breed.  相似文献   

10.
In the present study, we aimed to investigate the changes in triacylglycerol (TAG) composition as affected by alterations in the cows' diet due to seasonal variations and genetic factors. For this study, 50 milk fat samples in winter and 50 in summer were used from 25 cows with the DGAT1 KK genotype and 25 cows with the DGAT1 AA genotype. The samples were analyzed for milk fat content (%), fat composition, and TAG composition. We found that the content of TAG species CN54 was higher and that of CN34 and CN36 lower in summer than in winter. This seasonal variation in TAG profile was related to seasonal changes in the fatty acids C14:0, C16:0, C18:0, C18:1 cis-9, total unsaturated fatty acids, and total long-chain fatty acids, most likely resulting from dietary differences between seasons. Furthermore, we quantified the effect of DGAT1 K232A polymorphism on TAG profile and detected a significant effect on TAG species CN36, with higher values for the DGAT1 KK genotype. When adjusting for differences in fat content, we found no significant effects of the DGAT1 K232A polymorphism on TAG profile. We detected a significant interaction between DGAT1 K232A polymorphism and season for TAG species CN42 and CN52; in summer, the KK genotype was associated with higher levels for CN42 than the AA genotype, whereas in winter, the difference between the genotypes was small. For CN52, in summer the AA genotype was associated with higher levels than the KK genotype. In winter, the difference between the genotypes was also small. We show that, regardless of preference for DGAT1 genotype (AA or KK) and depending on the availability of FA according to season, UFA (C18:1 cis-9), short-chain FA (C6:0 and C10:0), and medium-chain FA might be esterified on the glycerol backbone of the TAG, keeping the structure characteristics of each TAG species. To our knowledge, this is the first report on the interaction effect of DGAT1 K232A polymorphism and season on the TAG composition in milk fat.  相似文献   

11.
Many studies have reported quantitative trait loci on chromosome 6 that affect milk production traits in dairy cattle. Osteopontin (OPN) and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PPARGC1A) are located in the middle of chromosome 6 about 6 Mb apart, which is approximately 12 cM. The objective of this study was to investigate the association of OPN and PPARGC1A variants with milk production traits in 2 independent Holstein cattle populations: the University of Wisconsin (UW) daughter design and the Cooperative Dairy DNA Repository (CDDR) granddaughter design resource populations. For OPN, 891 cows from the UW resource population were genotyped for the C/T polymorphism reported previously in the CDDR population. Additive effects were significant for fat percentage, protein percentage, and fat yield in the UW resource population. These results are consistent with previous studies that have shown significant association of OPN variants with milk composition traits. The association between PPARC1A variants was investigated in UW and CDDR resource populations using 2 single nucleotide polymorphisms. For the UW resource population, additive effects were significantly increased for protein percentage and decreased for milk yield. Dominance effects were not significant for any of the examined traits. For the CDDR population, PPARGC1A was associated with a significant increase in milk protein percentage and in SCS. Thus, in UW and CDDR populations, PPARGC1A was associated with a significant increase in milk protein percentage in contrast to association results previously reported for the German Holstein population.  相似文献   

12.
《Journal of dairy science》2023,106(4):2573-2587
The relationship between K232A polymorphism of the DGAT1 gene and milk yield and composition was evaluated by meta-analysis of pooled data of more than 10,000 genotyped cattle. Four genetic models, including dominant (AA+KA vs. KK), recessive (AA vs. KA+KK), additive (AA vs. KK), and co-dominant (AA+KK vs. KA) were used to analyze the data. The standardized mean difference (SMD) was used to measure the size of the effects of the A and K alleles of K232A polymorphism on milk-related traits. The results showed that additive model was the best model for describing the effects of K232A polymorphism on studied traits. Under additive model, milk fat content was strongly decreased in cows having the AA genotype (SMD = −1.320). Furthermore, the AA genotype reduced the protein content of milk (SMD = −0.400). A significant difference in daily milk yield (SMD = 0.225) and lactation yield (SMD = 0.697) was found between cows carrying AA and KK genotypes, suggesting the positive effects of the K allele on these traits. Cook's distance measurement suggested some studies as outliers and sensitivity analyses by removing influential studies revealed that the results of meta-analyses for daily milk yield, fat content and protein content were not sensitive to outliers. However, the outcome of the meta-analysis for lactation yield was strongly influenced by outlier studies. Egger's test and Begg's funnel plots showed no evidence of publication bias in included studies. In conclusion, the K allele of K232A polymorphism showed a tremendous effect on increasing fat and protein contents in the milk of cattle, especially when 2 copies of this allele are inherited together, whereas the A allele of K232A polymorphism had negative effects on these traits.  相似文献   

13.
Milk production systems in several countries show considerable differences between seasons. For example, in the Netherlands, cows are kept inside and fed silage in winter, whereas they are on pasture in summer. The differences between seasons affect milk yield and composition and might influence the genetic background of milk production traits. The objective of this study was to estimate phenotypic and genetic effects of season on milk production traits. For this purpose, 19,286 test-day milk production records of 1,800 first-parity Dutch Holstein-Frisian cows were available, and these cows were genotyped using a 50K SNP panel. Phenotypic effects of season were significant for all milk production traits. Effects of season were large for milk fat yield, fat content, and protein content. Genetic correlations between milk production traits in different seasons showed that genotype by season interaction effects were relatively small for most milk production traits. The genetic background of protein content and lactose content seems to be sensitive to seasonal effects. Furthermore, the genetic correlations between spring and autumn differed significantly from unity for almost all milk production traits. A genome-wide association study for genotype by season interaction identified chromosomal regions on BTA3, BTA14, BTA20, and BTA25 that showed genotype by season interaction effects, including a region containing DGAT1, which showed interaction effects for fat content and protein content.  相似文献   

14.
A major objective of dairy cattle genomic research is to identify genes underlying the variability of milk production traits that could be useful in breeding programs. The candidate gene approach provides tools for searching for causative polymorphisms affecting quantitative traits. Genes with a possible effect on milk traits in cattle can be involved in different physiological pathways, such as triglyceride synthesis [acyl-CoA:diacylglycerol acyltransferase 1 gene (DGAT1)], fat secretion from the mammary epithelial tissue (butyrophilin), or entire-body energy homeostasis regulation (leptin and leptin receptor). In this study, based on data from 252 Black and White bulls from the active Polish dairy population, effects and potential interactions of 9 single nucleotide polymorphisms in the butyrophilin, DGAT1, leptin, and leptin receptor genes were investigated. Additionally, the effect of the number of additive, dominance, and epistatic genetic effects fitted into the model on the estimates of model parameters and model selection was illustrated. Phenotypic records were daughter yield deviations for milk, fat, and protein yields, obtained from a routine national genetic evaluation. Out of all the analyzed polymorphisms, DGAT1 K232A had a much larger effect on milk traits than the other single nucleotide polymorphisms considered. Estimates of the additive genetic effect of K232A expressed as half of the difference between Lys- and Ala-encoding variants were −107.4 kg of milk, 5.4 kg of fat, and −1.6 kg of protein at first parity, as well as −120 kg of milk and 6.8 kg of fat at second parity. In terms of model selection, it was demonstrated that the modified version of Bayesian information criterion selects models with the parameterization reflecting the genetic background of the analyzed trait, while the Bayesian information criterion chooses models that are too highly parameterized.  相似文献   

15.
The major objectives of this study were 1) to assess the statistical properties of models commonly used for the estimation of single nucleotide polymorphism (SNP) effects under the assumption of various modes of inheritance and various parameterizations of SNP genotypes using simulated data, and 2) to compare effects of the selected polymorphisms located within butyrophilin (BTN1A1), diacylglycerol acyltransferase 1 (DGAT1), leptin (LEP), and leptin receptor (LEPR) candidate genes on milk production traits using data from 2 dairy cattle breeds (190 Jersey cows and 475 Polish Holstein-Friesian cows). Simulation results showed that type I error and power were not dependent on the assumed parameterization, but differences were observed regarding confidence intervals of estimated SNP effects. In the presence of epistasis, correct confidence intervals for all (epistatic and nonepistatic) SNP and all modes of inheritance were provided only by the parameterization proposed by C. H. Kao and Z. B. Zeng in 2002. However, if no dominance effect was included in the model, confidence intervals for SNP effects were correct for all parameterizations. Results based on real data showed that for both breeds the additive effects of polymorphisms were generally similar, except for LEPR, which had a different allele associated with increased fat content in Holstein-Friesians than in Jerseys. In both breeds, DGAT1 had the largest additive effect of the polymorphisms considered, but its effect on most milk traits was more pronounced in Jerseys than in Holstein-Friesians. Evidence of epistasis was found between LEPR and DGAT1, as well as between LEPR and BTN1A1, but only for milk content traits and only in the Holstein-Friesian breed. There was also more evidence for dominance in the Holstein-Friesian breed than in the Jersey breed.  相似文献   

16.
In a previous study, we identified candidate causative variants located in 24 functional candidate genes for milk protein and fatty acid composition in Montbéliarde, Normande, and Holstein cows. We designed these variants on the custom part of the EuroG10K BeadChip (Illumina Inc., San Diego, CA), which is routinely used for genomic selection analyses in French dairy cattle. To validate the effects of these candidate variants on milk composition and to estimate their effects on cheesemaking properties, a genome-wide association study was performed on milk protein, fatty acid and mineral composition, as well as on 9 cheesemaking traits (3 laboratory cheese yields, 5 coagulation traits, and milk pH). All the traits were predicted from midinfrared spectra in the Montbéliarde cow population of the Franche-Comté region. A total of 194 candidate variants located in 24 genes and 17 genomic regions were imputed on 19,862 cows with phenotypes and genotyped with either the BovineSNP50 (Illumina Inc.) or the EuroG10K BeadChip. We then tested the effect of each SNP in a mixed linear model including random polygenic effects estimated with a genomic relationship matrix. We confirm here the effects of candidate causative variants located in 17 functional candidate genes on both cheesemaking properties and milk composition traits. In each candidate gene, we identified the most plausible causative variant: 4 are missense in the ALPL, SLC26A4, CSN3, and SCD genes, 7 are located in 5′UTR (AGPAT6), 3′ untranslated region (GPT), or upstream (CSN1S1, CSN1S2, PAEP, DGAT1, and PICALM) regions, and 6 are located in introns of the SLC37A1, MGST1, CSN2, BRI3BP, FASN, and ANKH genes.  相似文献   

17.
Complex interactions between rumen microbiota, cow genetics, and diet composition may exist. Therefore, the effect of linseed oil, DGAT1 K232A polymorphism (DGAT1), and the interaction between linseed oil and DGAT1 on CH4 and H2 emission, energy and N metabolism, lactation performance, ruminal fermentation, and rumen bacterial and archaeal composition was investigated. Twenty-four lactating Holstein-Friesian cows (i.e., 12 with DGAT1 KK genotype and 12 with DGAT1 AA genotype) were fed 2 diets in a crossover design: a control diet and a linseed oil diet (LSO) with a difference of 22 g/kg of dry matter (DM) in fat content between the 2 diets. Both diets consisted of 40% corn silage, 30% grass silage, and 30% concentrates (DM basis). Apparent digestibility, lactation performance, N and energy balance, and CH4 emission were measured in climate respiration chambers, and rumen fluid samples were collected using the oral stomach tube technique. No linseed oil by DGAT1 interactions were observed for digestibility, milk production and composition, energy and N balance, CH4 and H2 emissions, and rumen volatile fatty acid concentrations. The DGAT1 KK genotype was associated with a lower proportion of polyunsaturated fatty acids in milk fat, and with a higher milk fat and protein content, and proportion of saturated fatty acids in milk fat compared with the DGAT1 AA genotype, whereas the fat- and protein-corrected milk yield was unaffected by DGAT1. Also, DGAT1 did not affect nutrient digestibility, CH4 or H2 emission, ruminal fermentation or ruminal archaeal and bacterial concentrations. Rumen bacterial and archaeal composition was also unaffected in terms of the whole community, whereas at the genus level the relative abundances of some bacterial genera were found to be affected by DGAT1. The DGAT1 KK genotype was associated with a lower metabolizability (i.e., ratio of metabolizable to gross energy intake), and with a tendency for a lower milk N efficiency compared with the DGAT1 AA genotype. The LSO diet tended to decrease CH4 production (g/d) by 8%, and significantly decreased CH4 yield (g/kg of DM intake) by 6% and CH4 intensity (g/kg of fat- and protein-corrected milk) by 11%, but did not affect H2 emission. The LSO diet also decreased ruminal acetate molar proportion, the acetate to propionate ratio, and the archaea to bacteria ratio, whereas ruminal propionate molar proportion and milk N efficiency increased. Ruminal bacterial and archaeal composition tended to be affected by diet in terms of the whole community, with several bacterial genera found to be significantly affected by diet. These results indicate that DGAT1 does not affect enteric CH4 emission and production pathways, but that it does affect traits other than lactation characteristics, including metabolizability, N efficiency, and the relative abundance of Bifidobacterium. Additionally, linseed oil reduces CH4 emission independent of DGAT1 and affects the rumen microbiota and its fermentative activity.  相似文献   

18.
DGAT1 polymorphism in Bos indicus and Bos taurus cattle breeds   总被引:1,自引:0,他引:1  
As a result of multiple QTL-mapping projects in recent years, a quantitative trait locus for milk fat percentage and milk yield has been described on BTA14. Recent reports name the acyl-CoA : diacylglycerol acyltransferase (DGAT1) gene on BTA14 as a potential candidate gene, with a nonconservative substitution of lysine by alanine (K232A) producing a major effect on milk composition and yield. DGAT1K appears to be the ancestral allele and the K232A substitution probably occurred after the divergence of the Bos indicus and Bos taurus lineages. These findings prompted us to genotype 1748 DNA samples of 38 different Bos taurus and Bos indicus cattle breeds from 13 countries on five continents (Europe, Africa, Asia, North America and South America), to examine the occurrence of the DGAT1 polymorphism and characterize the K232A substitution in cattle breeds of different origins and selected for different purposes (e.g., beef, dairy and dual purpose). Calculating pairwise FST values for pooled subpopulations showed least divergence for Bos indicus breeds with high milk fat percentage. Fixation of DGAT1A was found in some Bos taurus breeds and fixation of DGAT1K in one Bos indicus breed. Breeds of no known organized breeding background from the Near East domestication centre of Bos taurus and taurine African N'Dama cattle were found to possess intermediate frequencies of DGAT1K. While beef breeds tended to harbour higher DGAT1A levels, dairy cattle showed everything from very low levels of DGAT1K to unexpectedly high frequencies of this allele.  相似文献   

19.
The purpose of this study was to analyze associations between polymorphisms in the PRNP gene and ewe milk traits. A total of 242,565 lactations of the Latxa breed were used. Milk, fat and protein yields, and fat and protein content from black-faced Latxa from Spanish Basque Country, black-faced Latxa from Navarra, and blond-faced Latxa were collected. To evaluate evidence of association, the different traits were analyzed using an animal model, where the PRNP genotype effect was included or not as a random effect. Adding the PRNP effect to the model improved the fitting for milk yield in black-faced Latxa from Spanish Basque Country and in blond-faced Latxa, for fat yield in black-faced Latxa from Navarra, and for protein yield in blond-faced Latxa. However, the proportion of the phenotypic variance explained by the PRNP effect for milk yield (1.0 × 10−3), fat yield (3.6 × 10−3) and protein yield (9.4 × 10−4) were near zero. The PRNP locus accounts for about 0.5, 1.5, and 0.4% of total genetic (PRNP and polygenic) variance in milk, fat, and protein yield. These values indicated that the PRNP effect is not relevant regarding genetic additive contribution. For breeding purposes, it is unlikely that selection for scrapie resistance will have an effect on the milk traits studied in the Latxa breed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号