共查询到20条相似文献,搜索用时 15 毫秒
1.
Fertility and survival of Swedish Red and White × Holstein crossbred cows and purebred Holstein cows
《Journal of dairy science》2023,106(4):2475-2486
Swedish Red and White × Holstein (S×H) cows were compared with pure Holstein (HOL) cows for fertility and survival traits in 2 commercial dairy farms in central-southern Córdoba province, Argentina, over 6 years (2008–2013). The following traits were evaluated: first service conception rate (FSCR), overall conception rate (CR), number of services per conception (SC), days open (DO), mortality rate, culling rate, survival to subsequent calvings, and length of productive life (LPL). The data set consisted of 506 lactations from 240 S×H crossbred cows and 1,331 lactations from 576 HOL cows. The FSCR and CR were analyzed using logistic regression, DO and LPL were analyzed using a Cox's proportional hazards regression model, and differences of proportions were calculated for mortality rate, culling rate, and survival to subsequent calvings. The S×H cows were superior to HOL cows in overall lactations for all the fertility traits (+10.5% FSCR, +7.7% CR, −0.5 SC, and 35 fewer DO). During the first lactation, S×H cows were superior to HOL cows for all fertility traits (+12.8% FSCR, +8.0% CR, −0.4 SC, and 34 fewer DO). In the second lactation, S×H cows exhibited lower SC (−0.5) and 21 fewer DO than HOL cows. In the third or greater lactations, S×H cows showed higher FSCR (+11.0%) and CR (+12.2%), lower SC (−0.8), and 44 fewer DO than pure HOL cows. In addition, S×H cows had a lower mortality rate (−4.7%) and a lower culling rate (−13.7%) than HOL cows. Due to the higher fertility and lower mortality and culling rates, the S×H cows had higher survival to the second (+9.2%), third (+16.9%), and fourth (+18.7%) calvings than HOL cows. Because of these results, S×H cows had longer LPL (+10.3 mo) than HOL cows. These results indicate that S×H cows had higher fertility and survival than HOL cows on commercial dairy farms in Argentina. 相似文献
2.
Montbéliarde (MO) × Holstein (HO) and Viking Red (VR) × HO crossbred cows were compared with pure HO cows in 8 large, high-performance dairy herds in Minnesota. All cows calved for the first time from December 2010 to April 2014. Fertility and survival traits were calculated from records of insemination, pregnancy diagnosis, calving, and disposal that were recorded via management software. Body condition score and conformation were subjectively scored once during early lactation by trained evaluators. The analysis of survival to 60 d in milk included 536 MO × HO, 560 VR × HO, and 1,033 HO cows during first lactation. Cows analyzed for other fertility, survival, and conformation traits had up to 13% fewer cows available for analysis. The first service conception rate of the crossbred cows (both types combined) increased 7%, as did the conception rate across the first 5 inseminations, compared with the HO cows during first lactation. Furthermore, the combined crossbred cows (2.11 ± 0.05) had fewer times bred than HO cows (2.30 ± 0.05) and 10 fewer d open compared with their HO herdmates. Across the 8 herds, breed groups did not differ for survival to 60 d in milk; however, the superior fertility of the crossbred cows allowed an increased proportion of the combined crossbreds (71 ± 1.5%) to calve a second time within 14 mo compared with the HO cows (63 ± 1.5%). For survival to second calving, the combined crossbred cows had 4% superior survival compared with the HO cows. The MO × HO and VR × HO crossbred cows both had increased body condition score (+0.50 ± 0.02 and +0.25 ± 0.02, respectively) but shorter stature and less body depth than HO cows. The MO × HO cows had less set to the hock and a steeper foot angle than the HO cows, and the VR × HO cows had more set to the hock with a similar foot angle to the HO cows. The combined crossbred cows had less udder clearance from the hock than HO cows, more width between both front and rear teats, and longer teat length than the HO cows; however, the frequency of first-lactation cows culled for udder conformation was uniformly low (<1%) across the breed groups. 相似文献
3.
Pure Holstein (HO) cows (n=416) were compared with Normande (NO) × HO (n=251), Montbéliarde (MO) × HO (n=503), and Scandinavian Red (SR) × HO (n=321) crossbred cows for survival, lifetime production, and profitability in 6 commercial herds in California. The SR crossbred cows were sired by both Swedish Red and Norwegian Red bulls. Cows calved from June 2002 to January 2009. For analysis of survival to subsequent calvings, lifetime production, and profitability, data were restricted to 3 of 6 herds because they had at least 20 cows in each of the breed groups. All cows had the opportunity to calve at least 4 times. Best prediction, which is used by USDA for national genetic evaluations in the United States, was used to determine lifetime production to 4 yr (1,461 d) in the herd after first calving from test-day observations. Production and survival were estimated after 4 yr to calculate lifetime profit. A profit function was defined to include revenues and expenses for milk, fat, protein, and other solids production; somatic cell count; reproduction; feed intake; calf value; salvage value; dead cow disposal; and fixed cost. The NO × HO (1.2%), MO × HO (2.0%), and SR × HO cows (1.6%) had significantly fewer deaths than did pure HO cows (5.3%) during the first 305 d of first lactation. All crossbred groups had significantly more cows that calved a second, third, and fourth time, and had mean survival that was 300 to 400 d longer than did pure HO cows. The NO × HO, MO × HO, and SR × HO cows had significantly higher lifetime fat plus protein production than did pure HO cows up to 1,461 d after first calving. For profitability (ignoring possible differences in health costs), NO × HO cows had 26% greater projected lifetime profit per cow, but 6.7% less profit per cow-day, than did pure HO cows. On the other hand, MO × HO and SR × HO cows had 50 to 44%, respectively, more projected lifetime profit per cow and 5.3 to 3.6%, respectively, more projected profit per cow-day than did pure HO cows. 相似文献
4.
Determination of energy and protein requirements for crossbred Holstein × Gyr preweaned dairy calves
A.L. Silva M.I. Marcondes E. Detmann M.M. Campos F.S. Machado S. C. Valadares Filho M.M.D. Castro J. Dijkstra 《Journal of dairy science》2017,100(2):1170-1178
The objective was to quantify the energy and protein nutritional requirements of Holstein × Gyr crossbred preweaned dairy calves until 64 d of age. Thirty-nine Holstein × Gyr crossbred male calves with an average initial live weight (mean ± SEM; for all next values) of 36 ± 1.0 kg were used. Five calves were slaughtered at 4 d of life to estimate the animals' initial body composition (reference group). The remaining 34 calves were distributed in a completely randomized design in a 3 × 2 factorial arrangement consisting of 3 levels of milk (2, 4, or 8 L/d) and 2 levels of starter feed (presence or absence in diet). At 15 and 45 d of life, 4 animals from each treatment were subjected to digestibility trials with total collection of feces (for 72 h) and urine (for 24 h). At 64 d of age, all animals were slaughtered, their gastro-intestinal tract was washed to determine the empty body weight (EBW; kg), and their body tissues were sampled for subsequent analyses. The net energy requirement for maintenance was estimated using an exponential regression between metabolizable energy intake and heat production (both in Mcal/EBW0.75 per d) and was 74.3 ± 5.7 kcal/EBW0.75 per d, and was not affected by inclusion of starter feed in the diet. The metabolizable energy requirement for maintenance was determined at the point of zero energy retention in the body and was 105.2 ± 5.8 kcal/EBW0.75 per d. The net energy for gain was estimated using the EBW and the empty body gain (EBG; kg/d) as 0.0882 ± 0.0028 × EBW0.75 × EBG0.9050±0.0706. The metabolizable energy efficiency for gain (kg) of the milk was 57.4 ± 3.45%, and the kg of the starter feed was 39.3 ± 2.09%. The metabolizable protein requirement for maintenance was 3.52 ± 0.34 g/BW0.75 per d. The net protein required for each kilogram gained was estimated as 119.1 ± 32.9 × EBW0.0663±0.059. The metabolizable protein efficiency for gain was 77 ± 8.5% and was not affected by inclusion of starter feed in the diet. In conclusion, the energy efficiency for gain of milk is higher than that of starter and the net protein required per unit protein gain increases with empty body weight. 相似文献
5.
Montbéliarde (MO) × Holstein (HO) and Viking Red (VR) × HO crossbred cows were compared with pure HO cows in 8 large, high-performance dairy herds. All cows were either 2-breed crossbred or pure HO cows that calved for the first time from December 2010 to April 2014. Best Prediction was used to calculate 305-d milk, fat, and protein production, as well as somatic cell score, and 513 MO × HO, 540 VR × HO, and 978 HO cows were analyzed for production in first lactation. Calving difficulty was scored from 1 (no assistance) to 5 (extreme difficulty). The analysis of calving traits included 493 MO × HO, 504 VR × HO, and 971 HO cows at first calving. Age at first calving was similar for breed groups, and the herds calved both crossbred (23.8 mo) and HO (23.9 mo) cows at young ages. The MO × HO crossbred cows had +3% higher production of 305-d fat plus protein production (actual basis, not mature equivalent) than the HO cows, and the VR × HO were similar to the HO cows for fat plus protein production. Breed groups did not differ for SCS during first lactation. The VR-sired 3-breed crossbred calves (from MO × HO dams) were similar to pure HO calves for calving difficulty; however, MO-sired male calves born to VR × HO dams had a mean score that was +0.5 points higher for calving difficulty than pure HO male calves. The 3-breed crossbred calves from both MO × HO (4%) and VR × HO (5%) first-lactation dams had a much lower stillbirth rate compared with pure HO calves (9%) from first-lactation dams. 相似文献
6.
《Journal of dairy science》2022,105(11):9286-9295
Holstein (HO) calves, 3-breed crossbred calves of Montbéliarde, Viking Red, and HO (MVH), and 3-breed crossbred calves of Normande, Jersey, and Viking Red (NJV) were compared for gestation length (GL), calf weight at birth (CW), calving difficulty (CD), and stillbirth (SB) in 2 research herds at the University of Minnesota. Calves were born from January 2009 to December 2019. For the St. Paul and Morris herds, HO calves (n = 1,121) were compared with MVH calves (n = 1,393) from primiparous and multiparous cows. For the single herd analysis at Morris, HO calves (n = 476), MVH calves (n = 922), and NJV calves (n = 405) were compared from primiparous and multiparous cows. Primiparous and multiparous births were analyzed separately because multiparous cows had multiple births, and CD and SB are likely different traits for primiparous and multiparous cows. Statistical analysis of GL, CW, CD, and SB included fixed effects of sex of calf, herd, breed group of calf, and year-season of calving. For the St. Paul and Morris herds, HO calves from primiparous (278 d) and multiparous (279 d) HO cows had shorter GL compared with MVH calves from primiparous (280 d) and multiparous (282 d) crossbred cows. The HO calves (39.4 and 43.2 kg, respectively) from primiparous and multiparous HO cows had lower CW compared with MVH calves (40.3 and 44.3 kg, respectively) from primiparous and multiparous crossbred cows. Calving difficulty and SB were not different for HO and MVH calves from primiparous and multiparous cows. For the single herd analysis at Morris, HO calves (278 and 279 d, respectively) from primiparous and multiparous HO cows had shorter GL compared with MVH calves (281 and 282 d, respectively) and NJV calves (282 and 282 d, respectively) from primiparous and multiparous crossbred cows. The CW of HO calves (38.6 and 42.0 kg, respectively) from primiparous and multiparous HO cows was lower compared with MVH calves (39.7 and 42.9 kg, respectively), but higher compared with NJV calves (35.1 and 38.0 kg, respectively) from primiparous and multiparous crossbred cows. Calving difficulty and SB did not differ for HO, MVH, and NJV calves from primiparous and multiparous cows. The longer GL for crossbred calves and higher CW for MVH calves did not increase CD and SB for primiparous and multiparous cows. Dairy producers may implement 3-breed rotational crossbreeding systems that include the HO, Jersey, Normande, Montbéliarde, and Viking Red breeds, and some breeds may increase GL and CW without an increase in CD and SB. 相似文献
7.
Normande (NO)×Holstein (HO) crossbred cows (n=251), Montbéliarde (MO)×HO crossbred cows (n=503), and Scandinavian Red (SR)×HO crossbred cows (n=321) were compared with pure HO cows (n=416) for fertility, somatic cell score (SCS), and 305-d projected milk, fat, and protein production during their first 5 lactations. The SR was a combination of Swedish Red and Norwegian Red. Cows were housed in 6 commercial herds in California and calved from June 2002 to January 2009. The NO, MO, and SR sires of crossbred cows were artificial insemination bulls via imported semen. The NO×HO, MO×HO, and SR×HO cows had fewer days to first breeding, enhanced first-service conception rates, higher pregnancy rates, and 12 to 26 fewer days open than did pure HO cows during their first 5 lactations. Mean SCS across lactations was similar for NO×HO (3.25) and pure HO (3.27) cows; however, MO×HO (2.98) and SR×HO (3.12) cows were significantly lower for SCS than were pure HO cows. The MO×HO cows and SR×HO cows were only 3 and 4% lower, respectively, than pure HO cows for 305-d projected production of fat (kg) plus protein (kg); however, NO×HO cows were 10% lower than pure HO cows for fat plus protein production. Therefore, the MO and SR are candidate breeds for crossbreeding with HO to improve the fertility and udder health of herds with high mean production. 相似文献
8.
《Journal of dairy science》2023,106(9):6005-6027
Feeding pregnant cows rumen-protected choline (RPC) may have the potential to affect the growth and health of offspring, but little is known about the optimal dose, or the potential mechanisms of action. The objectives of this experiment were to 1) determine if increasing RPC supplementation during late gestation in multiparous Holstein cows would improve calf growth and 2) determine if maternal choline supplementation alters global DNA methylation patterns. Pregnant multiparous Holstein cows (n = 116) were randomly assigned to diets targeting 0g choline ion (0.0 ± 0.000 choline ion, %DM, control; CTL), 15g of choline ion (recommended dose; RD) from an established RPC product (0.10 ± 0.004 choline ion, %DM, RPC1RD; ReaShure, Balchem Corp.; positive control), or 15g (0.09 ± 0.004 choline ion, %DM, RPC2RD) or 22g (0.13 ± 0.005 choline ion, %DM, high dose; RPC2HD) of choline ion from a concentrated RPC prototype (RPC2; Balchem Corp.). Treatments were mixed into a total mixed ration and cows had ad libitum access via a roughage intake control system (Hokofarm Group, Marknesse, Netherlands). All female Holstein (n = 49) and Holstein × Angus calves (male, n = 18; female, n = 30) were enrolled and fed colostrum from a cow within the same treatment. Holstein calves and Holstein × Angus calves were fed an accelerated and traditional milk replacer program, respectively, and offered ad libitum access to calf starter. Jugular vein blood samples were collected, and body weight was measured at 7, 14, 28, 42, and 56 d of age. Categorical treatment and continuous effects of actual prepartum maternal choline ion intake were analyzed using mixed effect models. An interaction of treatment with sex, nested within breed, resulted in any choline treatment increasing the proportion of methylated whole blood DNA in male, but not female calves. Although 37% of Holstein calves across all treatments experienced abomasal bloat, no evidence for differences in health measurements (signs of respiratory disease and fecal consistency) were observed across treatments. During the first 2 wk of life in Holstein calves, RPC2HD tended to increase average daily gain (ADG) and feed efficiency (FE) compared with CTL and increasing maternal choline ion intake linearly increased ADG and FE. Maternal choline supplementation increased plasma glucose compared with CTL, while increasing serum insulin-like growth factor-1 and decreasing serum lipopolysaccharide binding protein at 7 d of age in Holstein calves. In Holstein × Angus calves, the effect of treatment on ADG tended to interact with sex: in males, RPC2HD increased ADG after 2 wk of life compared with CTL, without evidence of a treatment effect in female calves. Increasing maternal choline ion intake linearly increased ADG after 2 wk of age in male Holstein × Angus calves, while quadratically increasing FE in both sexes. Altered global DNA methylation patterns in male Holstein × Angus calves, and changes in blood metabolites in Holstein calves, provide 2 potential mechanisms for observed improvements in calf growth. Continuous treatment models demonstrated that the effects of maternal choline supplementation are sensitive to the amount of maternal choline ion intake, with greater benefit to calves observed at higher maternal intakes. 相似文献
9.
Nonnecke BJ Waters WR Foote MR Palmer MV Miller BL Johnson TE Perry HB Fowler MA 《Journal of dairy science》2005,88(1):195-210
Effects of neonatal vaccination on antigen-specific cellular and humoral immune responses of dairy calves have not been well described. The purpose of this study was to characterize the ontogeny of the adaptive immune response in calves sensitized to the attenuated strain of Mycobacterium bovis, bacillus Calmette-Guerín. Holstein bull calves were nonvaccinated (n = 6, vaccination controls) or vaccinated subcutaneously (n = 6) with bacillus Calmette-Guerín at 1 and 7 wk of age. Composition and functional capacities of blood mononuclear cell populations from calves were evaluated at 1 (prevaccination), 3, 6, 7, 8, 9, and 12 wk of age. Young adults (nulliparous heifers, n = 4) vaccinated in an identical manner were sampled concurrently to evaluate effects of animal maturity on the development of the adaptive immune response. Responses of nonvaccinated calves to recall antigen (Mycobacterium bovis purified protein derivative) ex vivo and in vivo (i.e., cutaneous delayed-type hypersensitivity) were minimal or nonexistent. Responses of cells from vaccinated calves and young adults to recall antigen, however, were evident as early as wk 2 after primary vaccination. Antigen-induced T cell subset proliferation, and secretion of interferon-gamma, nitric oxide, and tumor necrosis factor-alpha by cells from vaccinated calves were comparable to or greater than responses of vaccinated adults during the 11-wk study. Eleven weeks after primary vaccination, cutaneous responses of vaccinated calves and young adults to intradermal administration of antigen were pronounced and comparable, demonstrating the capacity of the bovine neonate to develop a vigorous cell-mediated immune response in vivo. Antibody responses (i.e., antibody concentrations in sera and in supernatants from antigen-stimulated cultures of blood mononuclear cells) of vaccinated calves, in contrast, were markedly lower than parallel responses of vaccinated adults. In conclusion, these results suggest that the bovine neonate can mount a vigorous, adult-like cell-mediated immune response when vaccinated at an early age. 相似文献
10.
《Journal of dairy science》2023,106(9):6325-6341
In recent years, the common dairy farming practice of early separation of dam and calf has received increased attention. Our aim was to explore how Norwegian dairy farmers with cow-calf contact (CCC) systems apply these systems in practice, and how they experience and perceive the interrelationships between cows and calves and humans within these systems. We conducted in-depth interviews with 17 farmers from 12 dairy farms and analyzed responses inductively, inspired by the grounded theory approach. The farmers in our study practiced their CCC systems differently from each other and had varying as well as common perceptions about these systems. Calves' intake of colostrum was not seen as a challenge, regardless of practice. The farmers generally perceived that any aggression shown by cows toward humans was merely an exhibition of cows' natural protective instinct. However, when the farmers had good relationships with their cows and the cows felt safe around them, the farmers could handle the calves and build good relationships with them as well. The farmers experienced the calves learning a lot from their dams. Most of the farmers' dairy housing systems were not adapted for CCC, and CCC systems could require modification in terms of placing greater emphasis on observing the animals and making adjustments in the barn and around milking. Some thought having CCC on pasture was the best and most natural, while others were reluctant to have CCC on pasture. The farmers encountered some challenges with stressed animals after later separation, but several had found methods to minimize stress. Generally, they had different opinions about workload, but agreed they spent less time on calf feeding. We found that these farmers were thriving with their CCC systems; they all described positive emotions around seeing cows and their calves together. Animal welfare and natural behavior were important to the farmers. 相似文献
11.
C.P. Ferris P.J. Purcell A.W. Gordon T. Larsen M. Vestergaard 《Journal of dairy science》2018,101(8):7258-7273
This 2 × 2 factorial design experiment was conducted to compare the performance of spring-calving Holstein dairy cows (HOL, n = 34) with Swedish Red × Jersey/Holstein crossbred (SR × J/HOL, n = 34) dairy cows within low and medium concentrate input grassland-based dairy systems. The experiment commenced when cows calved and encompassed 1 full lactation. Cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio, and 40:60 DM ratio, for low and medium, respectively] until turnout, grazed grass plus either 1.0 or 4.0 kg of concentrate/d during the grazing period (low and medium, respectively), and grass silage and concentrates (85:15 DM ratio, and 70:30 DM ratio, for low and medium, respectively) from rehousing and until drying off. No significant genotype × system interactions were present for any of the feed intake or full-lactation milk production data examined. Full-lactation concentrate DM intakes were 769 and 1,902 kg/cow for the low and medium systems, respectively, whereas HOL cows had a higher total DM intake than SR × J/HOL cows in early lactation, but not in late lactation. Although HOL cows had a higher lactation milk yield than SR × J/HOL cows, the latter produced milk with a higher fat and protein content, and thus fat plus protein yield was unaffected by genotype. Milk produced by the SR × J/HOL cows had a higher degree of saturation of fatty acids than milk produced by the HOL cows, and the somatic cell score of milk produced by the former was also higher. Throughout the lactation, HOL cows were on average 30 kg heavier than SR × J/HOL cows, whereas the SR × J/HOL cows had a higher body condition score than the HOL cows. Holstein cows had a higher incidence of mastitis and ovarian dysfunction that SR × J/HOL cows. 相似文献
12.
《Journal of dairy science》2022,105(1):242-254
The objective of this study was to investigate the effect of cow genotype and parity on dry matter intake (DMI) and production efficiencies in pasture-based systems. Three dairy cow genotypes were evaluated over 3 yr; 40 Holstein-Friesian (HF), 40 Jersey × HF (JEX), and 40 Norwegian Red × JEX (3WAY) each year, with each genotype grazed in equal numbers on 1 of 4 grazing treatments in a 2 × 2 factorial arrangement of treatments [diploid or tetraploid perennial ryegrass (Lolium perenne L.) with or without white clover (Trifolium repens L.)]. A total of 208 individual cows were used during the experiment. The effect of parity (lactation 1, 2, and 3+) was also evaluated. Individual DMI was estimated 8 times during the study, 3 times in 2015 and in 2017, and twice in 2016, using the n-alkane technique. Days in milk at each DMI measurement period were 64, 110, and 189, corresponding to spring, summer, and autumn. Measures of milk production efficiency calculated were total DMI/100 kg of body weight (BW), milk solids (kg fat + protein; MSo)/100 kg of BW, solids-corrected milk (SCM)/100 kg of BW, and unité fourragère lait (net energy requirements for lactation equivalent of 1 kg of standard air-dry barley; UFL) available for standard (4.0% fat and 3.1% protein content) milk production after accounting for maintenance. During the DMI measurement periods HF had a greater milk yield (23.2 kg/cow per d) compared with JEX and 3WAY (22.0 and 21.9 kg/cow per d, respectively) but there was no difference in MSo yield. Holstein-Friesian and JEX, and JEX and 3WAY had similar DMI, but HF had greater total DMI than 3WAY (DMI was 17.2, 17.0, and 16.7 kg/cow per d for HF, JEX, and 3WAY, respectively). Jersey × Holstein-Friesian cows were the most efficient for total DMI/100 kg of BW, SCM/100 kg of BW, and MSo/100 kg of BW (3.63, 4.96, and 0.39 kg/kg of BW) compared with HF (3.36, 4.51, and 0.35 kg/kg of BW) and 3WAY (3.45, 4.63, and 0.37 kg/kg of BW), respectively. Unité fourragère lait available for standard milk production after accounting for maintenance was not different among genotypes. As expected, DMI differed significantly among parities with greater parity cows having higher DMI and subsequently higher milk and MSo yield. Although all 3 genotypes achieved high levels of DMI and production efficiency, JEX achieved the highest production efficiency. Some of the efficiency gains (SCM/100 kg of BW, MSo/100 kg of BW, and total DMI/100 kg of BW) achieved with JEX decreased when the third breed (Norwegian Red) was introduced. 相似文献
13.
Bjelland DW Weigel KA Hoffman PC Esser NM Coblentz WK Halbach TJ 《Journal of dairy science》2011,94(10):5194-5203
A total of 648 purebred Holstein and 319 backcross Holstein × Jersey dairy cattle were compared for production, reproduction, health, linear type, and growth traits. Animals were born between 2003 and 2009 and were housed in the University of Wisconsin–Madison Integrated Dairy Facility. All animals had Holstein dams; lactating dams were mated to unproven Holstein sires to produce purebred (control) Holsteins or to unproven F1 Jersey × Holstein crossbred sires to produce backcross animals, whereas nulliparous dams were mated to proven Holstein sires to produce purebred (other) Holsteins. Traits were analyzed using mixed linear models with effects of season of birth, age of dam, sire, birth year of sire, days in milk, lactation, and linear type score evaluator. Control Holsteins had greater 305-d milk yield (12,645 vs. 11,456 kg), 305-d mature equivalent milk yield (13,420 vs. 12,180 kg), peak daily milk yield (49.5 vs. 46.4 kg), total lactation milk yield (11,556 vs. 10,796 kg), and daily fat-corrected milk yield (43 vs. 40 kg) compared with backcrosses. Days open and services per conception as a heifer or cow did not differ between control Holsteins, other Holsteins, or backcrosses. The proportion of first-parity births that required assistance was less in control Holsteins than in backcross cows (3.7 vs. 11.2%). The incidence of scours or respiratory problems in calves did not differ between control Holsteins, other Holsteins, and backcrosses, nor did the incidence of mastitis, injury, or feet problems. Control Holstein heifers were heavier (629 vs. 557 kg), with greater hip height (145 vs. 139 cm), body length (167 vs. 163 cm), heart girth (205 vs. 198 cm), and hip width (54 vs. 53 cm) at 22 mo of age. On a 50-point scale for linear type traits, Holsteins were larger in stature compared with backcrosses (41 vs. 28), had wider rumps (37 vs. 33), and wider rear udders (34 vs. 32). Results of this study suggest that backcross Holstein × Jersey cattle have decreased production but fail to demonstrate an advantage in health and reproduction compared with purebred Holsteins. 相似文献
14.
R.O. Rodrigues R.F. Cooke S.M.B. Rodrigues L.N. Bastos V.F.S. de Camargo K.S. Gomes J.L.M. Vasconcelos 《Journal of dairy science》2018,101(10):9296-9308
This study compared physiological and productive parameters in 3/4 Holstein × 1/4 Gir dairy cows receiving a prepartum concentrate containing ammonium chloride to reduce urine pH near 7.0 (CON; n = 17), or a commercial anionic supplement to reduce urine pH near 6.0 (SUPP; n = 17). Nonlactating, multiparous, pregnant cows were assigned to receive SUPP or CON beginning 21 d before expected date of calving. Cows were maintained in a single drylot pen with ad libitum access to corn silage, and individually received their prepartum concentrate once daily (0800 h) before calving. Cows from both treatments completely consumed their concentrate allocation within 30 min after feeding. Cow body weight and body condition score were recorded once weekly, urine pH measured every 3 d, and blood samples collected on d ?21, ?14, ?9, ?6, and ?3 relative to expected calving date. After calving (d 0), cows were moved to an adjacent drylot pen with ad libitum access to water and a total mixed ration, and were milked twice daily (0600 and 1700 h). Cow body weight and body condition score were recorded once weekly and individual milk production was recorded daily until 30 d in milk (DIM). Blood samples were collected before each milking during the first 5 DIM, as well as at 6, 9, 16, 23, and 30 DIM before the morning milking. Based on actual calving dates, cows received SUPP or CON for (mean ± standard error) 19.2 ± 1.2 and 19.0 ± 0.9 d before calving, respectively. Urine pH was less in SUPP versus CON cows during the last 15 d of gestation (6.12 vs. 7.15, respectively). Milk yield during the first 5 DIM and throughout the experimental period was greater in SUPP versus CON cows (by 20 and 14%, respectively), whereas serum Ca concentrations did not differ between treatments during the first 5 DIM. Serum concentrations of fatty acids were greater in SUPP versus CON cows 3 d before and at calving (by 52 and 22%, respectively), whereas SUPP cows had lower serum glucose and cortisol concentration at calving (by 23 and 27%, respectively). Hence, the SUPP treatment decreased prepartum urine pH near 6.0 in Holstein × Gir dairy cows without depressing concentrate intake compared with CON, although total dry matter intake was not evaluated to fully investigate feed intake responses. Moreover, the SUPP treatment transiently affected serum glucose, fatty acids, and cortisol concentrations near the time of calving, and resulted in greater milk yield during the initial 30 DIM compared with CON. 相似文献
15.
The objective was to evaluate the association between the single nucleotide polymorphism at position +735 in the interleukin-8 receptor-α (CXCR1) gene (CXCR1c.735) and disease incidence, milk production, reproductive performance, and survival in Holstein cows. Three-hundred fifty Holstein cows were enrolled. No association was found between CXCR1c.735 genotype and retained fetal membranes, metritis, or endometritis. Incidence rate of clinical mastitis was associated with CXCR1c.735 genotype; cows with genotypes CC and GC had a decreased incidence rate of clinical mastitis compared with GG cows. Milk yield was associated with CXCR1c.735 genotype; cows with genotype GC had greater milk yield than GG cows. Hazard of pregnancy was not associated with CXCR1c.735 genotype. Cows that had clinical mastitis had decreased hazard of pregnancy, and cows that had endometritis tended to have a decreased hazard of pregnancy. Hazard of death or culling was not associated with CXCR1c.735 genotype. Multiparous cows and cows that had mastitis had increased hazard of death or culling. In contrast to what we expected, cows with the genotype GG had an increased incidence rate of clinical mastitis and decreased milk yield. 相似文献
16.
《Journal of dairy science》2023,106(1):312-322
Culled dairy cows represent a considerable source of meat production, but their carcasses may vary greatly in quality because of the wide variation in the age, stage of lactation, breed, body condition, and other characteristics of the cows at slaughter. However, the effect of crossbreeding on the value of culled cows has so far received little investigation. The aim of this observational study was to compare a range of carcass attributes of cull cows from 3-breed rotational crossbreeding using Viking Red, Montbéliarde (MO), and Holstein (HO) bulls with those of HO purebred cows. Data on 1,814 dairy cows were collected. Cows were reared together in one herd and slaughtered in 4 slaughterhouses. The carcass weight, fleshiness, and fatness scores, the total value, and the price (€/kg) of each cow carcass were recorded. The culling of a few cows in the sample (n = 86) was classified by the farm manager as “urgent” following a diagnosis of injury or sickness, and this information was recorded. Carcass traits were analyzed with a mixed model which included the fixed effects of parity, days in milk, genetic group (purebred HO, 787 cows, and crossbred cows, classified according to the breed of sire within crossbreds, with 309, 428, and 290 cows sired by Viking Red, MO, and HO bulls, respectively), and interactions, and the random effects of month × year of the date of slaughter, and slaughterhouse. Logistic regression was used to investigate the association of parity, days in milk and purebred or crossbred origin with unplanned, “urgent” culling compared with regular culling. Average carcass weight across genetic groups was 297 ± 65 kg, average price €2.03 ± 0.53/kg, and average value €631 ± 269. Compared with HO, crossbred carcasses were 7 to 12% heavier depending on the breed of sire, were graded + 0.12 to + 0.28 units higher for fleshiness and + 0.26 to + 0.30 units higher for fatness, and fetched an 8 to 11% higher price. As a consequence, compared with purebred HO, carcasses from crossbreds had 15 to 24% higher value (€84 to €133 more per cow), with crossbred cows sired by MO showing the greatest values. Moreover, compared with the HO cows, the crossbred cows had a 37% lower risk of being urgently removed from the herd, which raises welfare concerns and may reduce the salvage value of cull cows. Because cull cows represent a supplemental source of income for dairy farmers, the greater overall value of crossbred cull cows should be taken into account in evaluating the economic effectiveness of crossbreeding schemes. 相似文献
17.
Blöttner S Heins BJ Wensch-Dorendorf M Hansen LB Swalve HH 《Journal of dairy science》2011,94(10):5212-5216
Brown Swiss × Holstein (BS × HO) crossbred cows (n = 55) and purebred Holstein (HO) cows (n = 50) were compared for milk yield, fat and protein production, somatic cell score, milking speed, and udder measurements for the first 3 lactations. Cows from a designed experiment were housed in a freestall barn at the experimental station of the federal state of Saxony-Anhalt, Germany, and calved from July 2005 to August 2008. Best prediction was used to determine actual production for 305-d lactations from test-day observations. For the first 3 lactations, BS × HO cows and HO cows were not significantly different for milk yield, fat and protein production, or SCS. Average milking time was significantly longer for BS × HO cows than for HO cows for first, second, and third lactations by 35, 51, and 30 s, respectively. Average milking speed expressed as average yield per minute was significantly lower for BS × HO cows than for HO cows for the first 3 lactations by 0.19, 0.35, and 0.19 kg/min, respectively. Front and rear teats were significantly longer for BS × HO cows than for HO cows. Furthermore, front and rear udder clearance was significantly lower for BS × HO cows compared with HO cows in first and second lactations. 相似文献
18.
D.B. Oss F.S. Machado T.R. Tomich L.G.R. Pereira M.M. Campos M.M.D. Castro T.E. da Silva M.I. Marcondes 《Journal of dairy science》2017,100(4):2603-2613
The objective of this study was to estimate the energy and protein requirements of crossbred (Holstein × Gyr) growing bulls. Twenty-four 10-mo-old bulls [initial body weight (BW) = 184 ± 23.4 kg] were used in a comparative slaughter trial. Six bulls were slaughtered at the beginning of the experiment as the reference group, to estimate initial empty body weight (EBW) and energy and protein contents of the remaining animals. The remaining bulls were assigned to a completely randomized design with 3 levels of dry matter intake and 6 replicates. The levels of dry matter intake were 1.2% of BW, 1.8% of BW, and ad libitum to target orts equal to 5% of the total amount that was fed. The remaining bulls were slaughtered at the end of the experiment. The bulls were fed a diet consisting of 59.6% corn silage and 40.4% concentrate on a dry matter basis. The equation that determined the relationship between EBW and BW was EBW = (0.861 ± 0.0031) × BW. The relationship between empty body gain (EBG) and average daily gain (ADG) was demonstrated by the following equation: EBG = (0.934 ± 0.0111) × ADG. Net energy for maintenance (NEM) was 74.8 ± 2.89 kcal/kg of EBW0.75 per day, and metabolizable energy for maintenance (MEM) was 120.8 kcal/kg of EBW0.75 per day. The detected efficiency of use of metabolizable energy for maintenance (km) was 61.9%. The equation used to estimate net energy for gain (NEG) was as follows: NEG = (0.049 ± 0.0011) × EBW0.75 × EBG0.729 ± 0.0532. The efficiency of use of metabolizable energy for gain (kg) was 35.7%. The metabolizable protein for maintenance (MPM) was 3.05 g/kg of BW0.75. The equation used to estimate net protein requirements for gain (NPG) = (87.138 ± 65.1378 × EBG) + [(40.436 ± 21.3640) × NEG]. The efficiency of use of metabolizable protein for gain (k) was 35.7%. We concluded that the estimates of energy and protein requirements presented herein are more appropriate than the National Research Council dairy cattle model and the Brazilian BR-CORTE system to balance the diets of crossbred (Holstein × Gyr) growing bulls. 相似文献
19.
《Journal of dairy science》2022,105(10):7998-8007
Studies have shown that β-glucans extracted from the cell wall of cereals, algae, and yeasts have been associated with improved immune function. However, it is unknown whether algae β-glucan supplementation affects the performance, blood metabolites, or cell counts of immune cells in dairy calves. The objective of this randomized clinical trial was to evaluate whether supplementation of β-glucans to milk replacer in dairy calves fed 6 L/d improved growth performance and fecal status and altered the blood metabolite profile. In this trial, we enrolled Holstein calves (n = 34) at birth (body weight 36.38 ± 1.33 kg; mean ± standard deviation) to receive, from 1 d of age, either 2 g/d algae β-glucans mixed into 6 L/d of milk replacer (22.4% crude protein and 16.2% fat) or an unsupplemented milk replacer (control). The calves were blocked in pairs according to birth weight, sex, and date of birth (up to 5 d difference). Calves were housed individually, and calf starter (24.7% crude protein and 13.9% neutral detergent fiber) was offered ad libitum based on orts of the previous day until 56 d of age (end of the trial). Body weight was measured weekly, and health checks and daily fecal consistency were evaluated daily in every calf by the same observer. Calves with 2 consecutive days of loose feces that sifted through bedding were considered diarrhea positive. We used a linear mixed effects model to evaluate the effects of β-glucan supplementation fed during the preweaning period on performance (average daily gain), final weight, feed efficiency (FE), white blood cell count, and selected blood metabolites, repeated by time. A generalized linear mixed effects model was also run to evaluate the likelihood of a diarrhea bout in the first 28 d of life, controlling for the calf as the subject with a logistic distribution. We included age, serum total protein at 48 h, and birth weight as covariates. At 56 d, β-glucan-supplemented calves weighed more than control calves (56.3 vs. 51.5 kg). Treatment had no effect on total starter intake, but there was a treatment by age interaction for FE, with greater FE for β-glucan-supplemented calves in wk 3 and 5 of age. There was only a tendency for average daily gain to be greater in supplemented calves than in control calves for the duration of the study. Furthermore, control calves had 14.66 [95% confidence interval (95% CI): 9.87–21.77] times greater odds of having a diarrheal bout than β-glucan-supplemented calves. Control calves had 12.70 (95% CI: 8.82–18.28) times greater odds of having an additional day with an abnormal fecal score compared with β-glucan-supplemented calves, suggesting that supplementation ameliorated diarrhea severity. We found no association of treatment with concentrations of serum total protein, albumin, creatinine, or glucose during the preweaning period. Our findings suggest that dietary supplementation of 2 g/d of algae β-glucans to milk replacer improved fecal status and may affect growth, as evidenced by a higher weaning weight, compared with control calves. Future studies should explore the effect of algae β-glucans on lower-gut physiology and digestibility in dairy calves. 相似文献
20.
Rotational crossbred cows of the Montbéliarde, Viking Red, and Holstein (HO) breeds (CB) were compared with HO cows for dry matter intake (DMI), body weight (BW), cow height, body condition score (BCS), and production during the first 150 d of first, second, and third lactations. Primiparous and multiparous CB (n = 63 and 43, respectively) and HO (n = 60 and 37, respectively) cows calved from September 2014 to June 2017. Cows were fed the same total mixed ration twice daily, with refusals weighed once daily. The BW was recorded twice weekly, and height at the withers and the hips was recorded monthly. The BCS was evaluated weekly. The fat plus protein production from 4 to 150 d in milk was calculated from monthly test days using best prediction. Primiparous and multiparous cows were analyzed separately. Statistical analysis for primiparous cows included the fixed effects of year of calving and breed group, and the analysis for multiparous cows included the fixed effect of breed group and the repeated effect of cow nested within breed group. Primiparous CB cows (2,807 kg) had lower mean DMI than HO cows (2,948 kg) from 4 to 150 d in milk of first lactation. Mean BW was not different for the CB (562 kg) and HO (556 kg) cows, but primiparous CB cows had mean wither height that was 4.0 cm shorter and mean hip height that was 2.0 cm shorter than that of HO cows. Primiparous CB cows (3.46) had higher mean BCS compared with HO cows (3.20). Mean fat plus protein production did not differ for the primiparous CB and HO cows (331 vs. 329 kg, respectively). Multiparous CB cows (3,360 kg) also had lower mean DMI than HO cows (3,592 kg) and did not differ (636 kg) from HO cows (644 kg) for mean BW. The CB cows had mean wither height that was 3.5 cm shorter than that of HO cows, but mean hip height did not differ for multiparous CB (145.2 cm) and HO (146.4 cm) cows. Mean BCS was higher for multiparous CB cows (3.25) than for HO cows (3.06), and mean fat plus protein production was not different for multiparous CB (445 kg) and HO (441 kg) cows. The lower DMI of the CB cows than HO cows resulted in less feed cost without loss of revenue from fat plus protein production. 相似文献