首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flexible thermoelectric (TE) devices hold great promise for energy harvesting and cooling applications, with increasing significance to serve as perpetual power sources for flexible electronics and wearable devices. Despite unique and superior TE properties widely reported in nanocrystals, transforming these nanocrystals into flexible and functional forms remains a major challenge. Herein, demonstrated is a transformative 3D conformal aerosol jet printing and rapid photonic sintering process to print and sinter solution‐processed Bi2Te2.7Se0.3 nanoplate inks onto virtually any flexible substrates. Within seconds of photonic sintering, the electrical conductivity of the printed film is dramatically improved from nonconductive to 2.7 × 104 S m?1. The films demonstrate a room temperature power factor of 730 µW m?1 K?2, which is among the highest values reported in flexible TE films. Additionally, the film shows negligible performance changes after 500 bending cycles. The highly scalable and low‐cost fabrication process paves the way for large‐scale manufacturing of flexible devices using a variety of high‐performing nanoparticle inks.  相似文献   

2.
Printing has drawn a lot of attention as a means of low per‐unit cost and high throughput patterning of graphene inks for scaled‐up thin‐form factor device manufacturing. However, traditional printing processes require a flat surface and are incapable of achieving patterning onto 3D objects. Here, a conformal printing method is presented to achieve functional graphene‐based patterns onto arbitrarily shaped surfaces. Using experimental design, a water‐insoluble graphene ink with optimum conductivity is formulated. Then single‐ and multilayered electrically functional structures are printed onto a sacrificial layer using conventional screen printing. The print is then floated on water, allowing the dissolution of the sacrificial layer, while retaining the functional patterns. The single‐ and multilayer patterns can then be directly transferred onto arbitrarily shaped 3D objects without requiring any postdeposition processing. Using this technique, conformal printing of single‐ and multilayer functional devices that include joule heaters, resistive deformation sensors, and proximity sensors on hard, flexible, and soft substrates, such as glass, latex, thermoplastics, textiles, and even candies and marshmallows, is demonstrated. This simple strategy promises to add new device and sensing functionalities to previously inert 3D surfaces.  相似文献   

3.
Thermoelectric power generation technology aims to convert thermal energy into electricity. Micromodule design optimization depends directly on the thermal environment. For low thermal energy input, optimized thermoelectric devices require 100 μm to 500 μm element thickness. These dimensions currently present a challenge for standard mass-production manufacturing techniques. In this paper, a unique printing technology for micromodule fabrication is presented. This technology is compared with a traditional bulk thermoelectric manufacturing process to highlight the advantages of the printing process to obtain scalable thermoelectric devices. Initial thermoelectric materials have been integrated in inks and then deposited by a spray technology onto a polymer substrate. A complete micromodule for application on nonplanar surfaces is also presented.  相似文献   

4.
Manufacturing of printed electronics relies on the deposition of conductive liquid inks, typically onto polymeric or paper substrates. Among available conductive fillers for use in electronic inks, carbon nanotubes (CNTs) have high conductivity, low density, processability at low temperatures, and intrinsic mechanical flexibility. However, the electrical conductivity of printed CNT structures has been limited by CNT quality and concentration, and by the need for nonconductive modifiers to make the ink stable and extrudable. This study introduces a polymer-free, printable aqueous CNT ink, and, via an ambient direct-write printing process, presents the relationships between printing resolution, ink rheology, and ink-substrate interactions. A model is constructed to predict printed feature sizes on impermeable substrates based on Wenzel wetting. Printed lines have conductivity up to 10 000 S m−1. The lines are flexible, with <5% change in DC resistance after 1000 bending cycles, and <3% change in DC resistance with a bending radius down to 1 mm. Demonstrations focus on i) conformality, via printing CNTs onto stickers that can be applied to curved surfaces, ii) interactivity using a CNT-based button printed onto folded paper structure, and iii) capacitive sensing of liquid wicking into the substrate itself. Facile integration of surface mount components on printed circuits is enabled by the intrinsic adhesion of the wet ink.  相似文献   

5.
The development of multifunctional 3D printing materials from sustainable natural resources is a high priority in additive manufacturing. Using an eco-friendly method to transform hard pollen grains into stimulus-responsive microgel particles, we engineered a pollen-derived microgel suspension that can serve as a functional reinforcement for composite hydrogel inks and as a supporting matrix for versatile freeform 3D printing systems. The pollen microgel particles enabled the printing of composite inks and improved the mechanical and physiological stabilities of alginate and hyaluronic acid hydrogel scaffolds for 3D cell culture applications. Moreover, the particles endowed the inks with stimulus-responsive controlled release properties. The suitability of the pollen microgel suspension as a supporting matrix for freeform 3D printing of alginate and silicone rubber inks was demonstrated and optimized by tuning the rheological properties of the microgel. Compared with other classes of natural materials, pollen grains have several compelling features, including natural abundance, renewability, affordability, processing ease, monodispersity, and tunable rheological features, which make them attractive candidates to engineer advanced materials for 3D printing applications.  相似文献   

6.
Development of flexible thermoelectric devices offers exciting opportunities for wearable applications in consumer electronics, healthcare, human–machine interface, etc. Despite the increased interests and efforts in nanotechnology-enabled flexible thermoelectrics, translating the superior properties of thermoelectric materials from nanoscale to macroscale and reducing the manufacturing costs at the device level remain a major challenge. Here, an economic and scalable inkjet printing method is reported to fabricate high-performance flexible thermoelectric devices. A general templated-directed chemical transformation process is employed to synthesize several types of 1D metal chalcogenide nanowires (e.g., Ag2Te, Cu7Te4, and Bi2Te2.7Se0.3). These nanowires are made into inks suitable for inkjet printing by dispersing them in ethanol without any additives. As a showcase for thermoelectric applications, fully inkjet-printed Ag2Te-based flexible films and devices are prepared. The printed films exhibit a power factor of 493.8 µW m−1 K−2 at 400 K and the printed devices demonstrate a maximum power density of 0.9 µW cm−2 K−2, both of which are significantly higher than those reported in state-of-the-art inkjet-printed thermoelectrics. The protocols of metal chalcogenide ink formulations, as well as printing are general and extendable to a wider range of material systems, suggesting the great potential of this printing platform for scalable manufacturing of next-generation, high-performance flexible thermoelectric devices.  相似文献   

7.
Currently, most customized hydrogels can only be processed via extrusion-based 3D printing techniques, which is limited by printing efficiency and resolution. Here, a simple strategy for the rapid fabrication of customized hydrogels using a photocurable 3D printing technique is presented. This technique has been rarely used because the presence of water increases the molecular distance between the polymer chains and reduces the monomer polymerization rate, resulting in the failure of rapid solid-liquid separation during printing. Although adding cross-linkers to printing inks can effectively accelerate 3D cross-linked network formation, chemical cross-linking may result in reduced toughness and self-healing ability of the hydrogel. Therefore, an interpenetrated-network hydrogel based on non-covalent interactions is designed to form physical cross-links, affording fast solid-liquid separation. Poly(acrylic acid (AA)-N-vinyl-2-pyrrolidone (NVP)) and carboxymethyl cellulose (CMC) are cross-linked via Zn2+-ligand coordination and hydrogen bonding; the resulting mixed AA-NVP/CMC solution is used as the printing ink. The printed poly(AA-NVP/CMC) hydrogel exhibited high tensile toughness (3.38 MJ m−3) and superior self-healing ability (healed stress: 81%; healed strain: 91%). Some objects like manipulator are successfully customized by photocurable 3D printing using hydrogels with high toughness and complex structures. This high-performance hydrogel has great potential for application in flexible wearable sensors.  相似文献   

8.
On-paper microsupercapacitors (MSCs) are a key energy storage component for disposable electronics that are anticipated to essentially address the increasing global concern of electronic waste. However, nearly none of the present on-paper MSCs combine eco-friendliness with high electrochemical performance (especially the rate capacity). In this work, highly reliable conductive inks based on the ternary composite of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), graphene quantum dots and graphene are developed for scalable inkjet printing of compact (footprint area ≈ 20 mm2) disposable MSCs on commercial paper substrates. Without any post treatment, the printed patterns attain a sheet resistance as low as 4 Ω ??1. The metal-free all-solid-state MSCs exhibit a maximum areal capacitance > 2 mF cm?2 at a high scan rate of 1000 mV s?1, long cycle life (>95% capacitance retention after 10 000 cycles), excellent flexibility, and long service time. Remarkably, the “totally metal-free” MSC arrays are fully inkjet printed on paper substrates and also exhibit high rate performance. The life cycle assessment indicates that these printed devices have much lower eco-toxicity and global warming potential than other on-paper MSCs.  相似文献   

9.
Large-area flexible transparent conductive electrodes (TCEs) featuring excellent optoelectronic properties (low sheet resistance, Rs, at high transparency, T) are vital for integration in transparent wearable electronics (i.e., antennas, sensors, supercapacitors, etc.). Solution processing (i.e., printing and coating) of conductive inks yields highly uniform TCEs at low cost, holding great promise for commercially manufacturing of transparent electronics. However, to formulate such conductive inks as well as to realize continuous conductive films in the absence of percolation issue are quite challenging. Herein, the scalable slot-die coating of Ti3C2Tx MXene aqueous inks is reported for the first time to yield large-area uniform TCEs with outstanding optoelectronic performance, that is, average DC conductivity of 13 000 ± 500 S cm−1. The conductive MXene nanosheets are forced to orientate horizontally as the inks are passing through the moving slot, leading to the rapid manufacturing of highly aligned MXene TCEs without notorious percolation problems. Moreover, through tuning the ink formulations, such conductive MXene films can be easily adjusted from transparent to opaque as required, demonstrating very low surface roughness and even mirror effects. These high-quality, slot-die-coated MXene TCEs also demonstrate excellent electrochemical charge storage properties when assembled into supercapacitors.  相似文献   

10.
To promote the real application of zinc-ion batteries (ZIBs), reconciling the high mass loading and gravimetric performance of MnO2 electrodes is of paramount importance. Herein, the rational regulation of 3D-printed carbon microlattices (3DP CMs) enabling an ultrathick MnO2 electrode with well-maintained gravimetric capacities is demonstrated. The 3DP CMs made of graphene and carbon nanotubes (CNTs) are fabricated by direct ink 3D printing and subsequent high-temperature annealing. 3D printing enables a periodic structure of 3DP CMs, while the thermal annealing contributes to high conductivity and defective surfaces. Due to these structural merits, uniform electrical field distribution and facilitated MnO2 deposition over the 3DP CMs are permitted. The optimal electrode with MnO2 loaded on the 3DP CMs can achieve a record-high specific capacity of 282.8 mAh g−1 even at a high mass loading of 28.4 mg cm−2 and high ion transfer dynamics, which reconciles the loading mass and gravimetric performance. As a result, the aqueous ZIBs based on the 3DP CMs loaded MnO2 afford an outstanding performance superior to most of the previous reports. This study reveals the essential role of interaction between active materials and current collectors, providing an alternative strategy for designing high-performance energy storage devices.  相似文献   

11.
A technique to create arrays of micrometer‐sized patterns of photosensitive polymers on the surface of elastomeric stamps and to transfer these patterns to planar and nonplanar substrates is presented. The photosensitive polymers are initially patterned through detachment lithography (DL), which utilizes the difference in adhesion forces to induce the mechanical failure in the film along the edges of the protruded parts of the mold. A polydimethylsiloxane (PDMS) stamp with a kinetically and thermally adjustable adhesion and conformal contact can transfer the detached patterns to etched or curved substrates, as well as planar ones. These printed patterns remain photochemically active for further modification via photolithography, and/or can serve as resists for subsequent etching or deposition, such that photolithography can be used on highly nonconformal and nonplanar surfaces. Various 3D structures fabricated using the process have potential applications in MEMS (micro‐electromechanical systems) sensors/actuators, optical devices, and microfluidics.  相似文献   

12.
A new method for complex metallic architecture fabrication is presented, through synthesis and 3D‐printing of a new class of 3D‐inks into green‐body structures followed by thermochemical transformation into sintered metallic counterparts. Small and large volumes of metal‐oxide, metal, and metal compound 3D‐printable inks are synthesized through simple mixing of solvent, powder, and the biomedical elastomer, polylactic‐co‐glycolic acid (PLGA). These inks can be 3D‐printed under ambient conditions via simple extrusion at speeds upwards of 150 mm s–1 into millimeter‐ and centimeter‐scale thin, thick, high aspect ratio, hollow and enclosed, and multi‐material architectures. The resulting 3D‐printed green‐bodies can be handled immediately, are remarkably robust, and may be further manipulated prior to metallic transformation. Green‐bodies are transformed into metallic counterparts without warping or cracking through reduction and sintering in a H2 atmosphere at elevated temperatures. It is shown that primary metal and binary alloy structures can be created from inks comprised of single and mixed oxide powders, and the versatility of the process is illustrated through its extension to more than two dozen additional metal‐based materials. A potential application of this new system is briefly demonstrated through cyclic reduction and oxidation of 3D‐printed iron oxide constructs, which remain intact through numerous redox cycles.  相似文献   

13.
Solution processing of metal halide perovskites offers the potential for efficient, high-speed roll-based manufacturing of emerging optoelectronic devices such as lightweight photovoltaics and light emitting diodes at lower cost than achievable with incumbent technologies (e.g., Silicon). However, current perovskite fabrication methods are limited in their speed, uniformity, and patterning resolution, relying on subtractive postdeposition scribing for integration of modules and device arrays. Here, a method for flexographic printing of MA0.6FA0.4PbI3 at 60 m min−1, the fastest reported perovskite absorber deposition and the first report of inline drying integrated with roll-based printing, is presented. This process delivers high-resolution patterning (< 3 µm line edge roughness) and precise thickness control through rheological design of precursor inks, allowing scalably printed 50 µm features over large areas (140 cm2), while obviating damaging scribing steps. 2D scanning photoluminescence (PL) is applied to resolve correlations between ink leveling dynamics and optoelectronic quality. Integrating these highly uniform printed perovskite absorbers into n-i-p planar perovskite solar cells, photovoltaic conversion efficiency up to 20.4% (0.134 cm2), the highest performance yet reported for any roll-printed perovskite cells is achieved. This study, thus, establishes flexography as a scalable approach to deposit precisely-patterned high-quality perovskites extensible to applications in emitter and detector arrays.  相似文献   

14.
2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for proper inkjet printing of MXene patterns. Here, tandem repeat synthetic proteins based on squid ring teeth (SRT) are employed as templates of molecular self‐assembly to engineer MXene inks that can be printed as stimuli‐responsive electrodes on various substrates including cellulose paper, glass, and flexible polyethylene terephthalate (PET). MXene electrodes printed on PET substrates are able to display electrical conductivity values as high as 1080 ± 175 S cm?1, which significantly exceeds electrical conductivity values of state‐of‐the‐art inkjet‐printed electrodes composed of other 2D materials including graphene (250 S cm?1) and reduced graphene oxide (340 S cm?1). Furthermore, this high electrical conductivity is sustained under excessive bending deformation. These flexible electrodes also exhibit effective EMI SE values reaching 50 dB at films with thicknesses of 1.35 µm, which mainly originate from their high electrical conductivity and layered structure.  相似文献   

15.
Engineering colloidal gel inks with suitable features for fabricating robust supraparticle architectures through 3D printing may overcome the challenges of precisely controlling nanoparticles spatial distribution across multiple scales. Herein, oppositely charged proteinaceous-polymeric nanoparticles are combined to generate multi-component colloidal gel (COGEL) inks for fabricating supraparticle volumetric architectures. Leveraging on different nano-functional units, double-interlinked supraparticle assemblies are established via electrostatic interactions and on-demand covalent photocrosslinking. The COGEL inks are readily processable through in-air extrusion 3D printing, forming stable colloidal filaments. 3D printing yielded architecturally defined and robust supraparticle constructs that supported human stem cells attachment and cytoskeletal spreading. Owing to double interparticle interlinks the fabricated supraparticle constructs remained stable under physiological conditions and high/low shear stress, improving over the lower mechanical stability of single-interlinked platforms. Double-interlinked COGELs are processable via suspension 3D printing, unlocking the freeform volumetric writing of nanoparticle inks in protein-based hydrogels volume. The dual-interlinked COGEL technology opens new possibilities for generating user-defined supraparticle architectures with precise volumetric distribution of nanoparticles, both in-air and in-hydrogel platforms. The freedom to select modular multi-particle combinations, as well as the rapid 3D programming of COGEL inks, broadens the range of modular colloidal materials that can be fabricated for a variety of biomedical applications.  相似文献   

16.
We report high performance solution processed conductive inks used as contact electrodes for printed organic field effect transistors (OFETs). Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) electrodes show highly improved very low sheet resistance of 65.8 ± 6.5 Ω/square (Ω/□) by addition of dimethyl sulfoxide (DMSO) and post treatment with methanol (MeOH) solvent. Sheet resistance was further improved to 33.8 ± 8.6 Ω/□ by blending silver nanowire (AgNW) with DMSO doped PEDOT:PSS. Printed OFETs with state of the art diketopyrrolopyrrole-thieno[3,2-b]thiophene (DPPT-TT) semiconducting polymer were demonstrated with various solution processable conductive inks, including bare, MeOH treated PEDOT:PSS, single wall carbon nanotubes, and hybrid PEDOT:PSS-AgNW, as the source and drain (S/D) electrode by spray printing using a metal shadow mask. The highest field effect mobility, 0.49 ± 0.03 cm2 V−1 s−1 for DPPT-TT OFETs, was obtained using blended AgNW with DMSO doped PEDOT:PSS S/D electrode.  相似文献   

17.
Inkjet printing is a promising alternative manufacturing method to conventional standard microfabrication techniques for the development of flexible and low-cost devices. Although the use of inkjet printing for the deposition of selected materials for the development of sensor devices has been reported many times in literature, it is still a challenge and a potential route towards commercialization to completely manufacture sensor devices with inkjet technology. In this work is demonstrated the fabrication of a functional low-cost dissolved oxygen (DO) amperometric sensor with feature sizes in the micrometer range using inkjet printing. All the required technological steps for the fabrication of a complete electrochemical three electrodes system are discussed in detail. The working and counter electrodes have been printed using a gold nanoparticle ink, whereas a silver nanoparticle ink was used to print a pseudo-reference electrode. Both inks are commercially available and can be sintered at low temperatures, starting already at 120 °C, which allows the use of plastic substrates. In addition, a printable SU8 ink formulation cured by UV is applied as passivation layer in the sensor device. Finally, as the performance of analytical methods strongly depends on the working electrode material, is demonstrated the electrochemical feasibility of this printed DO sensor, which shows a linear response in the range between 0 and 8 mg L−1 of DO, and affords a detection limit of 0.11 mg L−1, and a sensitivity of 0.03 μA L mg−1. The use of flexible plastic substrates and biocompatible inks, and the rapid prototyping and low-cost of the fabricated sensors, makes that the proposed manufacturing approach opens new opportunities in the field of biological and medical sensor applications.  相似文献   

18.
3D printed graphene aerogels hold promise for flexible sensing fields due to their flexibility, low density, conductivity, and piezo-resistivity. However, low printing accuracy/fidelity and stochastic porous networks have hindered both sensing performance and device miniaturization. Here, printable graphene oxide (GO) inks are formulated through modulating oxygen functional groups, which allows printing of self-standing 3D graphene oxide aerogel microlattice (GOAL) with an ultra-high printing resolution of 70 µm. The reduced GOAL (RGOAL) is then stuck onto the adhesive tape as a facile and large-scale strategy to adapt their functionalities into target applications. Benefiting from the printing resolution of 70 µm, RGOAL tape shows better performance and data readability when used as micro sensors and robot e-skin. By adjusting the molecular structure of GO, the research realizes regulation of rheological properties of GO hydrogel and the 3D printing of lightweight and ultra-precision RGOAL, improves the sensing accuracy of graphene aerogel electronic devices and realizes the device miniaturization, expanding the application of graphene aerogel devices to a broader field such as micro robots, which is beyond the reach of previous reports.  相似文献   

19.
Developing advanced three‐dimensional (3D) structural supercapacitors with both high capacity and good mechanical strength remains challenging. Herein, a novel road is reported for fabricating 3D structural strengthening supercapacitors with adjustable capacitance based on urchin‐like Cu(OH)2 lattice electrodes by bridging 3D printing technology with a facile electroless plating and electro‐oxidation method. As revealed by the results, the 3D‐printed octet‐truss lattice electrode features a high volumetric capacitance of 8.46 F cm?3 at 5 mA cm?3 and superior retention capacity of 68% at 1 A cm?3. The assembled symmetric supercapacitor with a 70.2% capacitance retention after 5000 cycles possesses a 12.8 Wh kg?1 energy density at a power density of 2110.2 W kg?1. Additionally, the resulting 3D structural strengthening electrodes can achieve both high compressive strength and toughness of 30 MPa and 264.7 kJ m?3, respectively, demonstrating high mechanical strength and excellent antideformation capacity. With the proposed strategy, the electrochemical and mechanical properties of these novel 3D structural strengthened supercapacitors can be easily tuned by a simple spatial framework design, fulfilling the increasing demand of highly customized power sources in the space‐constrained microelectronics and astronautic electronics industries.  相似文献   

20.
Transfer printing methods are used to pattern and assemble monolithic carbon nanotube (CNT) thin-film transistors on large-area transparent, flexible substrates. Airbrushed CNT thin-films with sheet resistance 1 kΩ sq−1 at 80% transparency were used as electrodes, and high quality chemical vapor deposition (CVD)-grown CNT networks were used as the semiconductor component. Transfer printing was used to pre-pattern and assemble thin film transistors on polyethylene terephthalate (PET) substrates which incorporated Al2O3/poly-methylmethacrylate (PMMA) dielectric bi-layer. CNT-based ambipolar devices exhibit field-effect mobility in range 1-33 cm2/V s and on/off ratio ∼103, comparable to the control devices fabricated using Au as the electrode material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号