首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditionally, process control systems utilize dedicated, point-to-point wired communication links using a small number of sensors and actuators to regulate appropriate process variables at desired values. While this paradigm to process control has been successful, chemical plant operation could substantially benefit from an efficient integration of the existing, point-to-point control networks (wired connections from each actuator/sensor to the control system using dedicated local area networks) with additional networked (wired or wireless) actuator/sensor devices. However, augmenting existing control networks with real-time wired/wireless sensor and actuator networks challenges many of the assumptions made in the development of traditional process control methods dealing with dynamical systems linked through ideal channels with flawless, continuous communication. In the context of control systems which utilize networked sensors and actuators, key issues that need to be carefully handled at the control system design level include data losses due to field interference and time delays due to network traffic. Motivated by the above technological advances and the lack of methods to design control systems that utilize hybrid communication networks, in the present work, we present a novel two-tier control architecture for networked process control problems that involve nonlinear processes and heterogeneous measurements consisting of continuous measurements and asynchronous, delayed measurements. This class of control problems arises naturally when nonlinear processes are controlled via control systems based on hybrid communication networks (i.e., point-to-point wired links integrated with networked wired/wireless communication) or utilizing multiple heterogeneous measurements (e.g., temperature measurements which can be taken to be continuous and species concentration measurements which are fed to the control system at asynchronous time instants and frequently involve delays). While point-to-point wired links are very reliable, the presence of a shared communication network in the closed-loop system introduces additional delays and data losses and these issues should be handled at the controller design level. In the two-tier control architecture presented in this work, a lower-tier control system, which relies on point-to-point communication and continuous measurements, is first designed to stabilize the closed-loop system, and an upper-tier networked control system is subsequently designed, using Lyapunov-based model predictive control theory, to profit from both the continuous and the asynchronous, delayed measurements as well as from additional networked control actuators to improve the closed-loop system performance. The proposed two-tier control architecture preserves the stability properties of the lower-tier controller while improving the closed-loop performance. The applicability and effectiveness of the proposed control method is demonstrated using two chemical process examples.  相似文献   

2.
This work develops a model predictive control (MPC) scheme using online learning of recurrent neural network (RNN) models for nonlinear systems switched between multiple operating regions following a prescribed switching schedule. Specifically, an RNN model is initially developed offline to model process dynamics using the historical operational data collected in a small region around a certain steady-state. After the system is switched to another operating region under a Lyapunov-based MPC with suitable constraints to ensure satisfaction of the prescribed switching schedule policy, RNN models are updated using real-time process data to improve closed-loop performance. A generalization error bound is derived for the updated RNN models using the notion of regret, and closed-loop stability results are established for the switched nonlinear system under RNN-based MPC. Finally, a chemical process example with the operation schedule that requires switching between two steady-states is used to demonstrate the effectiveness of the proposed RNN-MPC scheme.  相似文献   

3.
This work explores the design of distributed model predictive control (DMPC) systems for nonlinear processes using machine learning models to predict nonlinear dynamic behavior. Specifically, sequential and iterative DMPC systems are designed and analyzed with respect to closed-loop stability and performance properties. Extensive open-loop data within a desired operating region are used to develop long short-term memory (LSTM) recurrent neural network models with a sufficiently small modeling error from the actual nonlinear process model. Subsequently, these LSTM models are utilized in Lyapunov-based DMPC to achieve efficient real-time computation time while ensuring closed-loop state boundedness and convergence to the origin. Using a nonlinear chemical process network example, the simulation results demonstrate the improved computational efficiency when the process is operated under sequential and iterative DMPCs while the closed-loop performance is very close to the one of a centralized MPC system.  相似文献   

4.
The two-point composition control problem of binary distillation columns is addressed. First, the exact model-based inventory control problem is studied, yielding the underlying solvability conditions with physical meaning, the limiting behavior attainable with any controller, and its equivalence with nonlinear geometric and MPC controllers. This control behavior is recovered via a measurement-driven linear controller made of a pair of decoupled PI loops and a static interaction compensator. A closed-loop dynamics study formally shows the recovery feature and provides stability conditions coupled with conventional-like tuning rules. The controller implementation needs only four static parameters that have direct physical meaning and can be estimated from plant data and/or simulation packages. The proposed technique is tested with two representative examples in the presence of actuator errors, measurement delays, and load disturbances, matching or improving the behavior obtained with previous schemes.  相似文献   

5.
鲁棒模型预测控制系统的评估基准   总被引:1,自引:0,他引:1  
张学莲  胡立生  曹广益 《化工学报》2008,59(7):1859-1862
在控制系统的性能评估中,基准的设计是个重要问题。将基本设计极限理论推广到模型预测控制系统(MPC),建立性能评估基准。直接考虑多输入多输出系统的频域扰动,建立输出反馈鲁棒模型预测控制器。此控制器仅仅依赖于过程参数,也是令闭环系统达到控制性能极限的基准控制器。建立了用于评估的性能指标,提出基于此基准的性能评估程序,用以评价其他模型预测控制系统的性能。数学算例证实了这一评估程序的有效性。  相似文献   

6.
In this work, we focus on the development and application of predictive-based strategies for control of particle size distribution (PSD) in continuous and batch particulate processes described by population balance models (PBMs). The control algorithms are designed on the basis of reduced-order models, utilize measurements of principle moments of the PSD, and are tailored to address different control objectives for the continuous and batch processes. For continuous particulate processes, we develop a hybrid predictive control strategy to stabilize a continuous crystallizer at an open-loop unstable steady-state. The hybrid predictive control strategy employs logic-based switching between model predictive control (MPC) and a fall-back bounded controller with a well-defined stability region. The strategy is shown to provide a safety net for the implementation of MPC algorithms with guaranteed stability closed-loop region. For batch particulate processes, the control objective is to achieve a final PSD with desired characteristics subject to both manipulated input and product quality constraints. An optimization-based predictive control strategy that incorporates these constraints explicitly in the controller design is formulated and applied to a seeded batch crystallizer. The strategy is shown to be able to reduce the total volume of the fines by 13.4% compared to a linear cooling strategy, and is shown to be robust with respect to modeling errors.  相似文献   

7.
This article focuses on the design of model predictive control (MPC) systems for nonlinear processes that utilize an ensemble of recurrent neural network (RNN) models to predict nonlinear dynamics. Specifically, RNN models are initially developed based on a data set generated from extensive open-loop simulations within a desired process operation region to capture process dynamics with a sufficiently small modeling error between the RNN model and the actual nonlinear process model. Subsequently, Lyapunov-based MPC (LMPC) that utilizes RNN models as the prediction model is developed to achieve closed-loop state boundedness and convergence to the origin. Additionally, machine learning ensemble regression modeling tools are employed in the formulation of LMPC to improve prediction accuracy of RNN models and overall closed-loop performance while parallel computing is utilized to reduce computation time. Computational implementation of the method and application to a chemical reactor example is discussed in the second article of this series.  相似文献   

8.
9.
Model predictive control (MPC) is a de facto standard control algorithm across the process industries. There remain, however, applications where MPC is impractical because an optimization problem is solved at each time step. We present a link between explicit MPC formulations and manifold learning to enable facilitated prediction of the MPC policy. Our method uses a similarity measure informed by control policies and system state variables, to “learn” an intrinsic parametrization of the MPC controller using a diffusion maps algorithm, which will also discover a low-dimensional control law when it exists as a smooth, nonlinear combination of the state variables. We use function approximation algorithms to project points from state space to the intrinsic space, and from the intrinsic space to policy space. The approach is illustrated first by “learning” the intrinsic variables for MPC control of constrained linear systems, and then by designing controllers for an unstable nonlinear reactor.  相似文献   

10.
基于加权偏离度统计方法的预测控制性能评估算法   总被引:1,自引:1,他引:0       下载免费PDF全文
赵超  张登峰  许巧玲  李学来 《化工学报》2012,63(12):3971-3977
针对带区域约束条件的预测控制系统性能评估问题,在考虑过程输出变量约束类型的基础上,提出了基于加权偏离度统计方法的控制性能评估算法。该方法依据控制要求的不同,将输出变量分为质量变量和约束变量,并结合工程经验合理选择变量的权重。基于系统闭环运行数据和约束设置,通过计算变量的加权偏离度得到控制系统的性能评估指标,从而为预测控制器的参数调整和性能提升提供了决策依据。系统仿真实例和工程应用证明了该评估算法对区域预测控制系统性能评估的有效性。  相似文献   

11.
基于神经网络和多模型的非线性自适应PID控制及应用   总被引:4,自引:2,他引:2  
刘玉平  翟廉飞  柴天佑 《化工学报》2008,59(7):1671-1676
针对一类未知的单输入单输出离散非线性系统,提出了基于神经网络和多模型的非线性自适应PID控制方法。该方法由线性自适应PID控制器、神经网络非线性自适应PID控制器以及切换机构组成。采用线性自适应PID控制器可保证闭环系统所有信号有界;采用神经网络非线性自适应PID控制器可改善系统性能;通过引入合理的切换机制,能够在保证闭环系统稳定的同时,提高系统性能。理论分析表明,该方法能够保证闭环系统所有信号有界,如果适当地选择神经网络的结构和参数,系统的跟踪误差将收敛于任意给定的紧集。将所提出的方法应用于连续搅拌反应釜,仿真结果验证了所提出方法的有效性。由于该方法基于增量式数字PID控制器,在工业过程中有着广阔的应用前景。  相似文献   

12.
In this work, we propose the integration of Koopman operator methodology with Lyapunov-based model predictive control (LMPC) for stabilization of nonlinear systems. The Koopman operator enables global linear representations of nonlinear dynamical systems. The basic idea is to transform the nonlinear dynamics into a higher dimensional space using a set of observable functions whose evolution is governed by the linear but infinite dimensional Koopman operator. In practice, it is numerically approximated and therefore the tightness of these linear representations cannot be guaranteed which may lead to unstable closed-loop designs. To address this issue, we integrate the Koopman linear predictors in an LMPC framework which guarantees controller feasibility and closed-loop stability. Moreover, the proposed design results in a standard convex optimization problem which is computationally attractive compared to a nonconvex problem encountered when the original nonlinear model is used. We illustrate the application of this methodology on a chemical process example.  相似文献   

13.
This work focuses on control of multi-input multi-output (MIMO) nonlinear processes with uncertain dynamics and actuator constraints. A Lyapunov-based nonlinear controller design approach that accounts explicitly and simultaneously for process nonlinearities, plant-model mismatch, and input constraints, is proposed. Under the assumption that all process states are accessible for measurement, the approach leads to the explicit synthesis of bounded robust multivariable nonlinear state feedback controllers with well-characterized stability and performance properties. The controllers enforce stability and robust asymptotic reference-input tracking in the constrained uncertain closed-loop system and provide, at the same time, an explicit characterization of the region of guaranteed closed-loop stability. When full state measurements are not available, a combination of the state feedback controllers with high-gain state observes and appropriate saturation filters, is employed to synthesize bounded robust multivariable output feedback controllers that require only measurements of the outputs for practical implementation. The resulting output feedback design is shown to inherit the same closed-loop stability and performance properties of the state feedback controllers and, in addition, recover the closed-loop stability region obtained under state feedback, provided that the observer gain is sufficiently large. The developed state and output feedback controllers are applied successfully to non-isothermal chemical reactor examples with uncertainty, input constraints, and incomplete state measurements. Finally, we conclude the paper with a discussion that attempts to put in perspective the proposed Lyapunov-based control approach with respect to the nonlinear model predictive control (MPC) approach and discuss the implications of our results for the practical implementation of MPC, in control of uncertain nonlinear processes with input constraints.  相似文献   

14.
Model predictive control (MPC) is an efficient method for the controller design of a large number of processes. However, linear MPC is often inappropriate for controlling nonlinear large-scale systems, while non-linear MPC can be computationally costly. The resulting optimization-based procedure can lead to local minima due to the, non-convexities that non-linear systems can exhibit. To overcome the excessive computational cost of MPC application for large-scale nonlinear systems, model reduction methodology in conjunction with efficient system linearizations have been exploited to enable the efficient application of linear MPC for nonlinear distributed parameter systems (DPS). An off-line model reduction technique, the proper orthogonal decomposition (POD) method, combined with a finite element Galerkin projection is first used to extract accurate non-linear low-order models from the large-scale ones. Trajectory Piecewise-Linear (TPWL) methodologies are subsequently developed to construct a piecewise linear representation of the reduced nonlinear model, both in a static and in a dynamic fashion. Linear MPC, based on quadratic programming, can then be efficiently performed on the resulting low-order, piece-wise affine system. Our combined methodology is readily applicable in combination with advanced MPC methodologies such as multi-parametric MPC (MP-MPC) (Pistikopoulos, 2009). The stabilisation of the oscillatory behaviour of a tubular reactor with recycle is used as an illustrative example to demonstrate our methodology.  相似文献   

15.
16.
For nonlinear processes the classical model predictive control (MPC) algorithm, in which a linear model is used, usually does not give satisfactory closed-loop performance. In such nonlinear cases a suboptimal MPC strategy is typically used in which the nonlinear model is successively linearised on-line for the current operating point and, thanks to linearisation, the control policy is calculated from a quadratic programming problem. Although the suboptimal MPC algorithm frequently gives good results, for some nonlinear processes it would be beneficial to further improve control accuracy. This paper details a computationally efficient nonlinear MPC algorithm in which a neural model is linearised on-line along the predicted trajectory in an iterative way. The algorithm needs solving on-line only a series of quadratic programming problems. Advantages of the discussed algorithm are demonstrated in the control system of a high-purity ethylene–ethane distillation column for which the classical linear MPC algorithm does not work and the classical suboptimal MPC algorithm is slow. It is shown that the discussed algorithm can give practically the same control accuracy as the algorithm with on-line nonlinear optimisation and, at the same time, the algorithm is significantly less computationally demanding.  相似文献   

17.
The design of a composite control system for nonlinear singularly perturbed systems using model predictive control (MPC) is described. Specifically, a composite control system comprised of a “fast” MPC acting to regulate the fast dynamics and a “slow” MPC acting to regulate the slow dynamics is designed. The composite MPC system uses multirate sampling of the plant state measurements, i.e., fast sampling of the fast state variables is used in the fast MPC and slow‐sampling of the slow state variables is used in the slow MPC. Using singular perturbation theory, the stability and optimality of the closed‐loop nonlinear singularly perturbed system are analyzed. A chemical process example which exhibits two‐time‐scale behavior is used to demonstrate the structure and implementation of the proposed fast–slow MPC architecture in a practical setting. © 2012 American Institute of Chemical Engineers AIChE J, 58: 1802–1811, 2012  相似文献   

18.
In this work, we develop a method for dynamic output feedback covariance control of the state covariance of linear dissipative stochastic partial differential equations (PDEs) using spatially distributed control actuation and sensing with noise. Such stochastic PDEs arise naturally in the modeling of surface height profile evolution in thin film growth and sputtering processes. We begin with the formulation of the stochastic PDE into a system of infinite stochastic ordinary differential equations (ODEs) by using modal decomposition. A finite-dimensional approximation is then obtained to capture the dominant mode contribution to the surface roughness profile (i.e., the covariance of the surface height profile). Subsequently, a state feedback controller and a Kalman-Bucy filter are designed on the basis of the finite-dimensional approximation. The dynamic output feedback covariance controller is subsequently obtained by combining the state feedback controller and the state estimator. The steady-state expected surface covariance under the dynamic output feedback controller is then estimated on the basis of the closed-loop finite-dimensional system. An analysis is performed to obtain a theoretical estimate of the expected surface covariance of the closed-loop infinite-dimensional system. Applications of the linear dynamic output feedback controller to both the linearized and the nonlinear stochastic Kuramoto-Sivashinsky equations (KSEs) are presented. Finally, nonlinear state feedback controller and nonlinear output feedback controller designs are also presented and applied to the nonlinear stochastic KSE.  相似文献   

19.
A finite horizon predictive control algorithm,which applies a saturated feedback control law as its local control law,is presented for nonlinear systems with time-delay subject to input constraints.In the algorithm,N free control moves,a saturated local control law and the terminal weighting matrices are solved by a minimization problem based on linear matrix inequality(LMI) constraints online.Compared with the algorithm with a nonsaturated local law,the presented algorithm improves the performances of the closed-loop systems such as feasibility and optimality.This model predictive control(MPC) algorithm is applied to an industrial continuous stirred tank reactor(CSTR) with explicit input constraint.The simulation results demonstrate that the presented algorithm is effective.  相似文献   

20.
Model predictive control (MPC) is one of the main process control techniques explored in the recent past; it is the amalgamation of different technologies used to predict future control action and future control trajectories knowing the current input and output variables and the future control signals. It can be said that the MPC scheme is based on the explicit use of a process model and process measurements to generate values for process input as a solution of an on-line (real-time) optimization problem to predict future process behavior. There have been a number of contributions in the field of nonlinear model–based predictive control dealing with issues like stability, efficient computation, optimization, constraints, and others. New developments in nonlinear MPC (NMPC) approaches come from resolving various issues, from faster optimization methods to different process models. This article specifically deals with chemical engineering systems ranging from reactors to distillation columns where MPC plays a role in the enhancement of the systems’ performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号