首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Covalent triazine frameworks (CTF) offer a tunable platform for photocatalytic H2 generation due to their diverse structures, low costs, and precisely tunable electronic structures. However, high exciton binding energy and short lifetimes of photogenerated carriers restrict their application in photocatalytic hydrogen evolution. Herein, a novel phosphorus-incorporated CTF is introduced to construct a chemically bonded PCTF/WO3 (PCTFW) heterostructure with a precise interface electron transfer channel. The phosphorus incorporation is found to dominantly reduce the exciton binding energy and promote the dissociation of singlet and triplet excitons into free charge carriers due to the regulation of electronic structures. High-quality interfacial W N bonds improve the interfacial transfer of photogenerated electrons, thus prolonging the lifetime of photogenerated electrons. Femtosecond transient absorption spectroscopy characterizations and DFT calculations further confirm both phosphorus incorporation and Z-scheme heterojunctions can synergistically boost the in-built electric field and accelerate the migration and separation of photogenerated electrons. The optimized photocatalytic H2-evolution rate of resultant PCTFW is 134.84 µmol h−1 (67.42 mmol h−1g−1), with an apparent quantum efficiency of 37.63% at 420 nm, surpassing many reported CTF-based photocatalysts so far. This work highlights the significance of atom-level interfacial exciton dissociation, and charge transfer and separation in improving photocatalysis.  相似文献   

2.
Heterostructure engineering is one of the most promising modification strategies for reinforcing Na+ storage of transition metal sulfides. Herein, based on the spontaneous hydrolysis-oxidation coupling reaction of transition metal sulfides in aqueous media, a VOx layer is induced and formed on the surface of VS2, realizing tight combination of VS2 and VOx at the nanoscale and constructing homologous VS2/VOx heterostructure. Benefiting from the built-in electric field at the heterointerfaces, high chemical stability of VOx, and high electrical conductivity of VS2, the obtained VS2/VOx electrode exhibits superior cycling stability and rate properties. In particular, the VS2/VOx anode shows a high capacity of 878.2 mAh g−1 after 200 cycles at 0.2 A g−1. It also exhibits long cycling life (721.6 mAh g−1 capacity retained after 1000 cycles at 2 A g−1) and ultrahigh rate property (up to 654.8 mAh g−1 at 10 A g−1). Density functional theory calculations show that the formation of heterostructures reduces the activation energy for Na+ migration and increases the electrical conductivity of the material, which accelerates the ion/electron transfer and improves the reaction kinetics of the VS2/VOx electrode.  相似文献   

3.
The inferior electrical conductivity of conventional electrodes and their slow charge transport impose limitations on the electrochemical performance of supercapacitors (SCs) using those electrodes, necessitating strategies to overcome the limitations. An in situ Ag ion-incorporated cation-exchanged bimetallic sulfide/metal oxide heterostructure (Ag-Co9-xFexS8@α-FexOy) is synthesized using a two-step hydrothermal method. The coordination bond formation and Ag nanoparticle (NP) incorporation improve the electrical conductivity and adhesion of the heterostructure and reduce its interface resistance and volume expansion throughout the charge/discharge cycles. Density functional theory investigations indicate that the remarkable interlayer and interparticle conductivities of the heterostructure resulting from Ag doping have changed its electronic states, leading to an enhanced electrical conductivity. The optimized electrode has an excellent specific capacity (213.6 mA h g−1 at 1 A g−1) and can maintain 93.2% capacity retention with excellent Coulombic efficiency over 20 000 charge/discharge cycles. A flexible solid-state extrinsic pseudocapacitor (EPSC) is fabricated using Ag-Co9-xFexS8@α-FexOy and Ti3C2TX electrodes. The EPSC has specific and volumetric capacitances of 259 F g−1 and 2.7 F cm−3 at 0.7 A g−1, respectively, an energy density of 80.9 Wh kg−1 at 525 W kg−1, and a capacity retention of 92.8% over 5000 charge/discharge cycles.  相似文献   

4.
Platinum (Pt) is regarded as a promising electrocatalyst for hydrogen evolution reaction (HER). However, its application in an alkaline medium is limited by the activation energy of water dissociation, diffusion of H+, and desorption of H*. Moreover, the formation of effective structures with a low Pt usage amount is still a challenge. Herein, guided by the simulation discovery that the edge effect can boost local electric field (LEF) of the electrocatalysts for faster proton diffusion, platinum nanocrystals on the edge of transition metal phosphide nanosheets are fabricated. The unique heterostructure with ultralow Pt amount delivered an outstanding HER performance in an alkaline medium with a small overpotential of 44.5 mV and excellent stability for 80 h at the current density of −10 mA cm−2. The mass activity of as-prepared electrocatalyst is 2.77 A mg−1Pt, which is 15 times higher than that of commercial Pt/C electrocatalysts (0.18 A mg−1Pt). The density function theory calculation revealed the efficient water dissociation, fast adsorption, and desorption of protons with hybrid structure. The study provides an innovative strategy to design unique nanostructures for boosting HER performances via achieving both synergistic effects from hybrid components and enhanced LEF from the structural edge effect.  相似文献   

5.
Sol-gel-derived, crack-free, and condensed TiOx thin films with improved barrier properties were successfully fabricated on polymeric substrates with a simple two-step heat treatment at low temperatures. To assess the barrier properties of the TiOx thin films, Ca corrosion tests were conducted and their water vapor transmission rates (WVTRs) were measured. We found that the two-step heat treatment (at 45 °C for 90 min and 110 °C for 60 min) produces a close-packed TiOx structure that substantially reduces the WVTRs of the coated polymeric substrates. The WVTRs of 86 nm thick TiOx thin films on polyethylene naphthalate (PEN) substrates at a relative humidity (RH) of 90% were found to be 0.133 g m−2 day−1 at 38 °C and 0.0387 g m−2 day−1 at 25 °C. In addition, the WVTR value of the TiOx thin films on PEN substrates are stable with respect to bending: it was found to increase by only ∼13% after 100 repetitions of bending with a 20 mm radius.  相似文献   

6.
The advent of new solid-state energy storage devices to tackle the electrical revolution requires the usage of nonlinear behavior leading to emergent phenomena. The ferroelectric analyzed herein belongs to a family of electrolytes that allow energy harvesting and storage as part of its self-charging features when thermally activated. The Na2.99Ba0.005ClO electrolyte shows quasi-adiabatic behavior with a continuous increase in polarization upon cycling, displaying almost no hysteresis. The maximum polarization obtained at a weak electric field is giant and similar to the remanent polarization. It depends on the temperature with a pyroelectric coefficient of 5.37 C m−2 °C−1 from −5 to 46 °C. The emergence occurs via negative resistance and capacitance. The glass transition is found to have its origins in the sharp depolarization at 46 – 48 °C. Above –10 °C, at ≈ –5 °C, another thermal anomaly may rely on the topologic characteristics of the A3–2xBaxClO (A = Li, Na, K) glass electrolytes enabling positive feedback of the current of electrons throughout the surface of the inner cell. The phenomena may pave the way toward a better understanding of dipolar nanodomain fragile glasses with exceptional ferroelectric characteristics to architect energy harvesting and storage devices based on multivalent thermally activated Na+-ion-ion electrolytes.  相似文献   

7.
Polymer photocatalysts have great promise for solar fuel production due to their flexible structural and functional designability. However, their photocatalytic efficiencies are still unsatisfactory, limited by their intrinsically large exciton binding energy and fast charge recombination. Herein, the atomistic structural engineering of donor–acceptor (D−A) polymer photocatalysts for enhanced charge separation and photocatalytic hydrogen production is proposed. By changing the electron affinity of the acceptor units, the electron delocalization and exciton binding energy of the polymeric networks can be readily tuned, resulting in enhanced charge separation efficiency and photocatalytic activity. The optimal sample shows the highest H2 production rate of 3207 µmol g−1 h−1 in the presence of ascorbic acid as the sacrificial agent. Moreover, the photocatalytic H2 production can be coupled with almost stoichiometrical conversion of 5-hydroxymethyl furfural to 2,5-diformylfuran.  相似文献   

8.
2D 1T phase MoS2 (1T-MoS2) nanosheet with metallic conductivity and expanded interlayer spacing is considered as a highly potential lithium storage electrode material but remains thermodynamic instability in aqueous media, seriously hindering the electrochemical performance. Herein, a versatile strategy is proposed for the preparation of thermodynamically stable 1T-MoS2/MXene heterostructures with the aid of delaminated Ti3C2Tx MXene (d-Ti3C2Tx) dispersion containing tetrabutylammonium hydroxide. The 2D d-Ti3C2Tx provides more uniform nucleation sites for MoS2, and the TBA+ ions can intercalate into MoS2 to induce the phase conversion from semiconducting 2H to 1T. Moreover, the electrochemical advantages of 1T-MoS2 and d-Ti3C2Tx can be united by the construction of a well-organized heterostructure. Outstanding rate performance is realized because of extra-large interlayer space of 1T MoS2 with TBA+ intercalation and decreased energy barrier for fast Li+ diffusion. Subsequently, a lithium-ion capacitor (LIC) is assembled based on 1T-MoS2/d-Ti3C2Tx as anode and hierarchically porous graphene nanocomposite with micro/mesoporous structure as a cathode. The LIC exhibits a large energy density up to 188 Wh kg−1, an ultra-high power density of 13 kW kg−1, together with remarkable capacity retention of 83% after 5000 cycles. This study demonstrates the great promise of 1T-MoS2/d-Ti3C2Tx heterostructures as anode for high-performance LICs.  相似文献   

9.
Rechargeable batteries with Li-metal anodes and Ni-rich LiNixMnyCozO2 (x + y + z = 1, NMC) cathodes promise high-energy-density storage solutions. However, commercial carbonate-based electrolytes (CBEs) induce deteriorative interfacial reactions to both Li-metal and NMC, leading to Li dendrite formation and NMC degradation. Moreover, CBEs are thermally unstable and flammable, demonstrating severe safety risks. In this study, an ultrathin and non-flammable dual-salt polymer electrolyte (DSPE) is proposed via lightweight polytetrafluoroethylene scaffold, poly(vinylidene fluoride-co-hexafluoropropylene) polymeric matrix, dual-salt, and adiponitrile/fluoroethylene carbonate functional plasticizers. The as-obtained DSPE exhibits an ultralow thickness of 20 µm, high room temperature ionic conductivity of 0.45 mS cm−1, and a large electrochemical window (4.91 V versus Li/Li+). The dual-salt synergized with functional plasticizers is used to fabricate a stable interface layer on both anode and cathode. In-depth experimental and theoretical analyses have revealed the formation of stable interfaces between the DSPE and the anode/cathodes. As a result, the DSPE effectively prevents Li/DSPE/Li symmetric cell from short-circuiting after 1200 h, indicating effective suppression of Li dendrites. Moreover, the Li/DSPE/NMC cell delivers outstanding cyclic stability at 2 C, maintaining a high capacity of 112 mAh g−1 over 1000 cycles.  相似文献   

10.
The flexible titanium dioxide (TiO2) nanofibers (NFs) film are promising candidates for high-performance wearable optoelectronic devices. However, the TiO2 ultraviolet photodetectors (UV PDs) generally suffer from low photosensitivity, which limits the practical applications. Herein, a TiO2 (TO) NFs film flexible photodetector integrated by ferroelectric BaTiO3 (BTO) NFs is developed via electrospinning technology with double sprinklers and in situ heat treatment. Compared with TO NFs PD with poor on/off ratio ≈44, the BTO@TO NFs PD-2 exhibits an excellent on/off ratio of ≈1.5  × 104 due to the dramatically restrained dark current. The ultralow dark current (pA level) is attributed to the depletion of photogenerated carriers by the space high-resistance state induced by the downward self-polarization field in ferroelectric BaTiO3 NFs. The ferroelectric domain with larger downward orientation in polarized BTO@TO NFs exhibits stronger self-polarization field to modify the directional transport of photogenerated carriers and enhances the band bending level, which improves the photocurrent of device. The special structure woven by ferroelectric nanofiber with self-polarization will provide a promising approach for improving the performance of flexible photodetectors.  相似文献   

11.
Insufficient and unstable energy output is the bottleneck issue radically restricting the application of micro-supercapacitors (MSCs). Herein, an interlayer atom injection strategy that can anchor low-valence Zn atoms (Znδ+, 0 < δ <2) on O-terminals of Ti3C2Tx (MXene) flakes within the MXene/silver-nanowires hybrid cathode of symmetric MSCs is first presented. Combining the polyacrylamide/ZnCl2 hydrogel electrolyte rich in Cl and Zn2+ ions, the matched Znδ+/Zn2+ (−0.76 V vs SHE) and Ag/AgCl (0.23 V vs SHE), redox couples between the symmetrical electrodes are activated to offer faradaic charge storage beside ions-intercalation involved pseudocapacitance. Thus, a battery-type voltage plateau (≈0.9 V) appears in the discharge curve of a fabricated pseudo-symmetric micro-redox capacitor, simultaneously achieving energy density enhancement (117 µWh cm−2 at 0.5 mA cm−2) and substantially improved power output stability (46% of the energy from the plateau region) relative to that before activation (98 µWh cm−2 without voltage platform). The work provides a fire-new strategy to overcome the performance bottlenecks confronting conventional MSCs.  相似文献   

12.
Sodium-based dual-ion batteries (SDIBs) have attracted increasing research interests in energy storage systems because of their advantages of high operating voltage and low cost. However, exploring desirable anode materials with high capacity and stable structures remains a great challenge. Here, an elaborate design is reported, starting from well-organized MoSe2 nanorods and introducing metal-organic frameworks, which simultaneously forms a bimetallic selenide/carbon composite with coaxial structure via electronegativity induction. By rationally adjusting the vacancy concentration and combining heterostructure engineering, the optimized MoSe2-x/ZnSe@C as anode material for Na-ion batteries achieves rapid electrochemical kinetics and satisfactory reversible capacities. The systematic electrochemical kinetic analyses combined with theoretical calculations further unveil the synergistic effect of Se-vacancies and heterostructure for the enhanced sodium storage, which not only induces more reversible Na+ storage sites but also improves the pseudocapacitance and reduce charge transfer resistance, thereby providing a great contribution to accelerating reaction kinetics. Furthermore, the as-constructed SDIB full cell based on the MoSe2-x/ZnSe@C anode and the expanded graphite cathode demonstrates impressively excellent rate performance (131 mAh g−1 at 4.0 A g−1) and ultralong cycling life over 1000 cycles (100 mAh g−1 at 1.0 A g−1), demonstrating its practical applicability in a wide range of sodium-based energy storage devices.  相似文献   

13.
Transition metal phosphides (MPx) with high theoretical capacities and low cost are regarded as the most promising anodes for lithium-ion batteries (LIBs), but the large volume variations and sluggish kinetics largely restrict their development. To solve the above challenges, herein a generic but effective method is proposed to encapsulate various monodispersed MPx into flexible carbon multi-chambers (MPx@NC, MNi, Fe, Co, and Cu, etc.) with pre-reserved voids, working as anodes for LIBs and markedly boosting the Li+ storage performance. Ni2P@NC, one representative example of MPx@NC anode, shows high reversible capacity (613 mAh g−1, 200 cycles at 0.2 A g−1), and superior cycle stability (475 mAh g−1, 800 cycles at 2 A g−1). Full cell coupled with LiFePO4 displays a high reversible capacity (150.1 mAh g−1 at 0.1 A g−1) with stable cycling performance. In situ X-ray diffraction and transmission electron microscope techniques confirm the reversible conversion reaction mechanism and robust structural integrity, accounting for enhanced rate and cycling performance. Theoretical calculations reveal the synergistic effect between MPx and carbon shells, which can significantly promote electron transfer and reduce diffusion energy barriers, paving ways to design high-energy-density materials for energy storage systems.  相似文献   

14.
The design of cheap, efficient, and durable electrocatalysts for high-throughput H2 production is critical to give impetus to hydrogen production from fundamental to practical industrial applications. Here, a hierarchical heterostructure hydrogen evolution reaction (HER) electrocatalyst (MoNi/NiMoOx) with 0D MoNi nanoalloys nanoparticles embedded on well-assembled 1D porous NiMoOx microrods in situ grown on 3D nickel foam (NF) is successfully constructed. The synergetic effect of different building units in the unique hierarchical structure endows the MoNi/NiMoOx composites with the highly active heterogeneous interface with low water dissociation energy (ΔGdiss = −1.2 eV) and optimized hydrogen adsorption ability (ΔGH* = −0.01 eV), fast electron/mass transport, and strong catalyst-support binding force. As a result, optimal MoNi/NiMoOx exhibits an ampere-level current density of 1.9 A cm−2 at an ultralow overpotential of 139 mV in 1.0 м KOH and 289 mV in 1.0 м PBS solution, respectively. Particularly, scaled-up MoNi/NiMoOx electrodes in a 10 × 10 cm2 membrane electrode assembly (MEA) electrolyzer reach a high H2 production rate of 12.12 L h−1 (12.12 times than that of commercial NF) and exhibit ultralong stability of 1600 h, verifying its huge potential for industrial hydrogen production.  相似文献   

15.
The inferior activity of hydrogen oxidation reaction (HOR) in alkali severely hampers the deployment of Ni catalysts in the promising anion exchange membrane fuel cells (AEMFCs), due to the unbalanced binding energies of hydrogen (HBE) and hydroxyl (OHBE) species. Ni-Mo alloy and nickel nitride have been proven to improve the Ni-based activities of HOR but they still can be further enhanced. Because it sacrifices the HBE for enlarging OHBE. Herein, it is reported that the activity can be further improved by constructing heterostructure between Ni nanoparticles (NPs) and nitride of Ni-Mo alloy (Ni0.2Mo0.8N) by an in situ synthetic strategy. The in situ prepared reduced graphene oxide (rGO) supported heterostructure (Ni/Ni0.2Mo0.8N/rGO) possesses the state-of-the-art activity (overpotential of 100 mV to achieve 2.9 mA cm−2), faster kinetics (kinetics current density of 11.20 mA cm−2 and exchange current density of 2.74 mA cm−2), and ultrahigh durability (maintaining the current densities for over 40 h or 10000 cycles). Detailed characterizations together with density functional theory simulations reveal that the tuned d-band electronic structures optimize and balance the HBE and OHBE, facilitating the HOR process on the as-fabricated heterostructured catalyst.  相似文献   

16.
To develop quick-charge sodium-ion battery, it is significant to optimize insertion-type anode to afford fast Na+ diffusion rate and excellent electron conductivity. First-principles calculations reveal the Ti O subcompound superiority for Na+ diffusion following Ti(II) O > Ti(III) O > Ti(IV) O. Hence, in situ growth of amorphous Ti O subcompounds with rich oxygen defects based on Ti3C2Tx-MXene is developed. Meanwhile, the composite presents expanded MXene interlayer spacing and much enhanced conductivity. The synergistic effect of enhanced electron/ion conduction gives a high capacity of 107 mAh g−1 at 50 A g−1, which gives 50% and 150% increasements compared with one counterpart without valence adjustment and another one without MXene expansion. It only needs 20 s (at 30 A g−1) to complete the discharge/charge process and obtains a capacity of 144.5 mAh g−1, which also shows a long-term cycling stability at quick-charge mode (121 mAh g−1 after 10000 cycles at 10 A g−1). The enhanced performance comes from fast electron transfer among Ti O subcompounds contributed by rich-defect amorphous TiO2–x, and a reversible change of elastic MXene with interlayer spacing between 1.4 and 1.9 nm during Na+ insertion/extraction process. This study provides a feasible route to boost the kinetics and develop quick-charge sodium-ion battery.  相似文献   

17.
Combining 2D MoS2 with other transition metal sulfide is a promising strategy to elevate its electrochemical performances. Herein, heterostructures constructed using MnS nanoparticles embedded in MoS2 nanosheets (denoted as MnS-MoS2) are designed and synthesized as anode materials for lithium/sodium-ion batteries via a facile one-step hydrothermal method. Phase transition and built-in electric field brought by the heterostructure enhance the Li/Na ion intercalation kinetics, elevate the charge transport, and accommodate the volume expansion. The sequential phase transitions from 2H to 3R of MoS2 and α to γ of MnS are revealed for the first time. As a result, the MnS-MoS2 electrode delivers outstanding specific capacity (1246.2 mAh g−1 at 1 A g−1), excellent rate, and stable long-term cycling stability (397.2 mAh g−1 maintained after 3000 cycles at 20 A g−1) in Li-ion half-cells. Superior cycling and rate performance are also presented in sodium half-cells and Li/Na full cells, demonstrating a promising practical application of the MnS-MoS2 electrode. This work is anticipated to afford an in-depth comprehension of the heterostructure contribution in energy storage and illuminate a new perspective to construct binary transition metal sulfide anodes.  相似文献   

18.
PbTiO3 (PTO) is explored as a versatile and tunable electron‐selective layer (ESL) for perovskite solar cells. To demonstrate effectiveness of PTO for electron–hole separation and charge transfer, perovskite solar cells are designed and fabricated in the laboratory with the PTO as the ESL. The cells achieve a power conversion efficiency (PCE) of ≈12.28% upon preliminary optimization. It is found that the PTO ferroelectric layer can not only increase the PCE, but also tune the photocurrent via tuning PTO's ferroelectric polarization. Moreover, to understand the physical mechanism underlying the carrier transport by the ferroelectric polarization, the electronic structure of PTO/CH3NH3PbI3 heterostructure is computed using the first‐principles methods, for which the triplet state is used to simulate charge transfer in the heterostructure. It is shown that the synergistic effect of type II band alignment and the specific ferroelectric polarization direction provide the effective extraction of electrons from the light absorber, while minimize recombination of photogenerated electron–hole pairs. Overall, the ferroelectric PTO is a promising and tunable ESL for optimizing electron transport in the perovskite solar cells. The design offers a different strategy for altering direction of carrier transport in solar cells.  相似文献   

19.
Regarding the complex properties of various cations, the design of aqueous batteries that can simultaneously store multi-ions with high capacity and satisfactory rate performance is a great challenge. Here an amorphization strategy to boost cation-ion storage capacities of anode materials is reported. In monovalent (H+, Li+, K+), divalent (Mg2+, Ca2+, Zn2+) and even trivalent (Al3+) aqueous electrolytes, the capacity of the resulting amorphous MoOx is more than quadruple than that of crystalline MoOx and exceeds those of other reported multiple-ion storage materials. Both experimental and theoretical calculations reveal the generation of ample active sites and isotropic ions in the amorphous phase, which accelerates cation migration within the electrode bulk. Amorphous MoOx can be coupled with multi-ion storage cathodes to realize electrochemical energy storage devices with different carriers, promising high energy and power densities. The power density exceeded 15000 W kg−1, demonstrating the great potential of amorphous MoOx in advanced aqueous batteries.  相似文献   

20.
Hybrid manganese halide has attracted much attention in the field of environment friendly ferroelectric and photo-responsive multifunctional materials. Here, the highly efficient photoluminescent inorganic framework MnBr42− is utilized to conceive and synthesize a series of hybrid manganese bromide compounds [RQ]2MnBr4 by introducing precisely designed quasi-spherical cations [RQ]+ (R  =  H, Me, Et, FEt, Q  =  quinuclidine). The accurate and effective modification of cations not only achieves the satisfactory ferroelectricity, but also enhances the photoluminescence quantum yield from 38.7% to 83.65%. Moreover, [FEtQ]2MnBr4 shows a highly efficient X-ray scintillator performance, including a large range of linear response to X-ray dose rate from 0.3 to 414.2  μ Gyair s−1, a high light yield of 34 438 photons per MeV, and a low detection limit of 258 nGyair s−1. This work provides an efficient strategy for the preparation of hybrid manganese halide ferroelectrics with highly efficient light-emission and X-ray detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号