首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non-aureus staphylococci (NAS), the microorganisms most frequently isolated from bovine milk worldwide, are a heterogeneous group of numerous species. To establish their importance as a group, the distribution of individual species needs to be determined. In the present study, NAS intramammary infection (IMI) was defined as a milk sample containing ≥1,000 cfu/mL in pure or mixed culture that was obtained from a cohort of cows assembled by the Canadian Bovine Mastitis Research Network. Overall, 6,213 (6.3%) of 98,233 quarter-milk samples from 5,149 cows and 20,305 udder quarters were associated with an NAS IMI. Of the 6,213 phenotypically identified NAS isolates, 5,509 (89%) were stored by the Canadian Bovine Mastitis Research Network Mastitis Pathogen Collection and characterized using partial sequencing of the rpoB housekeeping gene, confirming 5,434 isolates as NAS. Prevalence of each NAS species IMI was estimated using Bayesian models, with presence of a specific NAS species as the outcome. Overall quarter-level NAS IMI prevalence was 26%. The most prevalent species causing IMI were Staphylococcus chromogenes (13%), Staphylococcus simulans (4%), Staphylococcus haemolyticus (3%), Staphylococcus xylosus (2%), and Staphylococcus epidermidis (1%). The prevalence of NAS IMI as a group was highest in first-parity heifers and was evenly distributed throughout cows in parities ≥2. The IMI prevalence of some species such as S. chromogenes, S. simulans, and S. epidermidis differed among parities. Overall prevalence of NAS IMI was 35% at calving, decreased over the next 10 d, and then gradually increased until the end of lactation. The prevalence of S. chromogenes, Staphylococcus gallinarum, Staphylococcus cohnii, and Staphylococcus capitis was highest at calving, whereas the prevalence of S. chromogenes, S. haemolyticus, S. xylosus, and S. cohnii increased during lactation. Although the overall prevalence of NAS IMI was similar across barn types, the prevalence of S. simulans, S. xylosus, S. cohnii, Staphylococcus saprophyticus, S. capitis, and Staphylococcus arlettae IMI was higher in tiestall barns; the prevalence of S. epidermidis IMI was lowest; and the prevalence of S. chromogenes and Staphylococcus sciuri IMI was highest in bedded-pack barns. Staphylococcus simulans, S. epidermidis, S. xylosus, and S. cohnii IMI were more prevalent in herds with intermediate to high bulk milk somatic cell count (BMSCC) and S. haemolyticus IMI was more prevalent in herds with high BMSCC, whereas other common NAS species IMI were equally prevalent in all 3 BMSCC categories. Distribution of NAS species IMI differed among the 4 regions of Canada. In conclusion, distribution differed considerably among NAS species IMI; therefore, accurate identification (species level) is essential for studying NAS epidemiology.  相似文献   

2.
A longitudinal study in 3 dairy herds was conducted to profile the distribution of coagulase-negative Staphylococcus (CNS) species causing bovine intramammary infection (IMI) using molecular identification and to gain more insight in the pathogenic potential of CNS as a group and of the most prevalent species causing IMI. Monthly milk samples from 25 cows in each herd as well as samples from clinical mastitis were collected over a 13-mo period. Coagulase-negative staphylococci were identified to the species level using transfer-RNA intergenic spacer PCR. The distribution of CNS causing IMI was highly herd-dependent, but overall, Staphylococcus chromogenes, Staphylococcus xylosus, Staphylococcus cohnii, and Staphylococcus simulans were the most prevalent. No CNS species were found to cause clinical mastitis. The effect of the most prevalent species on the quarter milk somatic cell count (SCC) was analyzed using a linear mixed model, showing that Staph. chromogenes, Staph. simulans, and Staph. xylosus induced an increase in the SCC that is comparable with that of Staphylococcus aureus. Almost all CNS species were able to cause persistent IMI, with Staph. chromogenes causing the most persistent infections. In conclusion, accurate species identification cannot be ignored when studying the effect of CNS on udder health, as the effect on SCC differs between species and species distribution is herd-specific. Staphylococcus chromogenes, Staph. simulans, and Staph. xylosus seem to be the more important species and deserve special attention in further studies. Reasons for herd dependency and possible cow- and quarter-level risk factors should be examined in detail for the different species, eventually leading to cost-benefit analyses for management changes and, if needed, treatment recommendations.  相似文献   

3.
In many parts of the world, coagulase-negative staphylococci (CNS) are the predominant pathogens causing intramammary infections (IMI) in dairy cows. The cows’ environment is thought to be a possible source for CNS mastitis and this was investigated in the present paper. A longitudinal field study was carried out in 6 well-managed dairy herds to determine the distribution and epidemiology of various CNS species isolated from milk, causing IMI and living freely in the cows’ environment, respectively. In each herd, quarter milk samples from a cohort of 10 lactating cows and environmental samples from stall air, slatted floor, sawdust from cubicles, and sawdust stock were collected monthly (n = 13). Isolates from quarter milk samples (n = 134) and the environment (n = 637) were identified to species level using amplified fragment length polymorphism (AFLP) genotyping. Staphylococcus chromogenes, S. haemolyticus, S. epidermidis, and S. simulans accounted for 81.3% of all CNS milk isolates. Quarters were considered infected with CNS (positive IMI status) only when 2 out of 3 consecutive milk samples yielded the same CNS AFLP type. The species causing IMI were S. chromogenes (n = 35 samples with positive IMI status), S. haemolyticus (n = 29), S. simulans (n = 14), and S. epidermidis (n = 6). The observed persistent IMI cases (n = 17) had a mean duration of 149.4 d (range 63.0 to 329.8 d). The CNS species predominating in the environment were S. equorum, S. sciuri, S. haemolyticus, and S. fleurettii. Herd-to-herd differences in distribution of CNS species were observed in both milk and the environment, suggesting that herd-level factors are involved in the establishment of particular species in a dairy herd. Primary reservoirs of the species causing IMI varied. Staphylococcus chromogenes and S. epidermidis were rarely found in the environment, indicating that other reservoirs were more important in their epidemiology. For S. haemolyticus and S. simulans, the environment was found as a reservoir, suggesting that IMI with these species were possibly environmental in origin.  相似文献   

4.
Subclinical mastitis causes an increase in milk somatic cell count (SCC) and can lead to reduced milk production and early culling. In many countries, non-aureus staphylococci (NAS) is the most common bacterial finding in subclinical mastitis of dairy cows. New methodology makes it possible to identify NAS species, but knowledge about the epidemiology is limited. The objective of this project was to improve advisory services for mastitis control by investigating associations between NAS and SCC, milk production, and persistence of intramammary infections (IMI). Farmers who had sent milk samples to the Swedish National Veterinary Institute (Uppsala, Sweden) were asked to participate if NAS was identified in the samples. Participating farmers were asked to resample all udder quarters of the cow once within 1 mo. Regression models were used to investigate associations between NAS and cow factors, udder quarter California mastitis test and SCC, and persistence of IMI. Associations with cow composite milk yield and SCC were also investigated. In total, 671 cows from 201 herds were enrolled in the study, and 19 NAS species were identified, of which the 4 most common were Staphylococcus epidermidis, Staphylococcus simulans, Staphylococcus chromogenes, and Staphylococcus haemolyticus. Persistent IMI was more common in udder quarters with Staphylococcus hyicus and S. simulans and less common in those with Staphylococcus saprophyticus IMI. β-Lactamase production by the different NAS species varied from 0 to 100%. There was a significant association between NAS species and California mastitis test and SCC of udder quarters, and this varied depending on parity. The cow composite milk SCC at the test milking before the initial sample was taken differed significantly with NAS species, but not at the subsequent test milking. Milk yield—at the test milking before or after the initial sample—did not differ significantly for NAS species. There were no significant associations between milk yield or SCC and persistent NAS IMI. In conclusion, the NAS species affects SCC and persistent IMI differently but not milk yield.  相似文献   

5.
Subclinical mastitis caused by intramammary infections (IMI) with coagulase-negative staphylococci (CNS) is common in dairy cows and may cause herd problems. Control of CNS mastitis is complicated by the fact that CNS contain a large number of different species. The aim of the study was to investigate the epidemiology of different CNS species in dairy herds with problems caused by subclinical CNS mastitis. In 11 herds, udder quarter samples were taken twice 1 mo apart, and CNS isolates were identified to the species level by biochemical methods. The ability of different CNS species to induce a persistent infection, and their associations with milk production, cow milk somatic cell count, lactation number, and month of lactation in cows with subclinical mastitis were studied. Persistent IMI were common in quarters infected with Staphylococcus chromogenes, Staphylococcus epidermidis, and Staphylococcus simulans. The results did not indicate differences between these CNS species in their association with daily milk production, cow milk somatic cell count, and month of lactation in cows with subclinical mastitis. In cows with subclinical mastitis, S. epidermidis IMI were mainly found in multiparous cows, whereas S. chromogenes IMI were mainly found in primiparous cows.  相似文献   

6.
Bovine mastitis is a frequent problem in Swiss dairy herds. One of the main pathogens causing significant economic loss is Staphylococcus aureus. Various Staph. aureus genotypes with different biological properties have been described. Genotype B (GTB) of Staph. aureus was identified as the most contagious and one of the most prevalent strains in Switzerland. The aim of this study was to identify risk factors associated with the herd-level presence of Staph. aureus GTB and Staph. aureus non-GTB in Swiss dairy herds with an elevated yield-corrected herd somatic cell count (YCHSCC). One hundred dairy herds with a mean YCHSCC between 200,000 and 300,000 cells/mL in 2010 were recruited and each farm was visited once during milking. A standardized protocol investigating demography, mastitis management, cow husbandry, milking system, and milking routine was completed during the visit. A bulk tank milk (BTM) sample was analyzed by real-time PCR for the presence of Staph. aureus GTB to classify the herds into 2 groups: Staph. aureus GTB-positive and Staph. aureus GTB-negative. Moreover, quarter milk samples were aseptically collected for bacteriological culture from cows with a somatic cell count ≥150,000 cells/mL on the last test-day before the visit. The culture results allowed us to allocate the Staph. aureus GTB-negative farms to Staph. aureus non-GTB and Staph. aureus-free groups. Multivariable multinomial logistic regression models were built to identify risk factors associated with the herd-level presence of Staph. aureus GTB and Staph. aureus non-GTB. The prevalence of Staph. aureus GTB herds was 16% (n = 16), whereas that of Staph. aureus non-GTB herds was 38% (n = 38). Herds that sent lactating cows to seasonal communal pastures had significantly higher odds of being infected with Staph. aureus GTB (odds ratio: 10.2, 95% CI: 1.9–56.6), compared with herds without communal pasturing. Herds that purchased heifers had significantly higher odds of being infected with Staph. aureus GTB (rather than Staph. aureus non-GTB) compared with herds without purchase of heifers. Furthermore, herds that did not use udder ointment as supportive therapy for acute mastitis had significantly higher odds of being infected with Staph. aureus GTB (odds ratio: 8.5, 95% CI: 1.6–58.4) or Staph. aureus non-GTB (odds ratio: 6.1, 95% CI: 1.3–27.8) than herds that used udder ointment occasionally or regularly. Herds in which the milker performed unrelated activities during milking had significantly higher odds of being infected with Staph. aureus GTB (rather than Staph. aureus non-GTB) compared with herds in which the milker did not perform unrelated activities at milking. Awareness of 4 potential risk factors identified in this study guides implementation of intervention strategies to improve udder health in both Staph. aureus GTB and Staph. aureus non-GTB herds.  相似文献   

7.
The aim of this observational retrospective cohort study was to identify management procedures that are associated with herd-level eradication of Streptococcus agalactiae in dairy herds. The objective was to compare herds that recovered from Strep. agalactiae with herds that remained infected with Strep. agalactiae on the basis of specific management procedures. Data from the Danish surveillance program for Strep. agalactiae, where all milk delivering dairy herds are tested yearly, were used to identify study herds. One hundred ninety-six herds that were classified in the program as infected with Strep. agalactiae, in both January 2013 and January 2014, were identified as study herds. These were followed until January 2017. One hundred forty-four herds remained infected every year until January 2017. Forty-six herds recovered from Strep. agalactiae after January 2014 (were tested negative continuously after January 2015, January 2016, or January 2017 and remained noninfected in the program from recovery until January 2017). Herd characteristics and management procedures were obtained through the Danish Cattle Database. Herd characteristics included herd size, yield, milking system, and bulk milk somatic cell count (SCC). Management procedures included the proportion of cows culled within 100 d after calving due to mastitis, the extent of diagnoses relative to the extent of mastitis treatments, the proportion of cows treated for mastitis during lactation, the proportion of cows treated for mastitis early in lactation, the proportion of cows treated at dry-off, and the median length of the dry period for cows receiving dry cow treatment. All variables were calculated on herd level. Multivariable logistic regression was used to analyze the association between herd infection status and management procedures. A higher proportion of culling due to mastitis within 100 d from calving was associated with a higher probability of herd-level recovery from Strep. agalactiae in herds with conventional milking system. For example, herds with conventional milking, a bulk milk SCC of 260,000 cells/mL, and 10% early culling due to mastitis had a recovery probability of 0.13, whereas similar herds with 20% early culling due to mastitis had a recovery probability of 0.15. A higher proportion of mastitis treatments within 250 d postcalving was associated with a higher probability of herd-level recovery for herds with a relatively high bulk milk SCC. For example, herds with conventional milking, a bulk milk SCC of 260,000 cells/mL, and 10% lactational mastitis treatments had a recovery probability of 0.12, whereas similar herds with 20% lactational mastitis treatments had a recovery probability of 0.15. Herds with a low bulk milk SCC (<220,000 cells/mL) combined with a low proportion of lactational treatments (<0.2) had a relatively high probability of herd-level recovery (>0.2). Additional variables, including the proportion of dry cow treatments, were not associated with herd-level recovery from Strep. agalactiae.  相似文献   

8.
Coagulase-negative staphylococci (CNS) are the most commonly isolated bacteria from goat milk, but they have often been identified with phenotypic methods, which may have resulted in misclassification. The aims of this paper were to assess the amount of misclassification of a phenotypic test for identifying CNS species from goat milk compared with transfer RNA intergenic spacer PCR (tDNA-PCR) followed by capillary electrophoresis, and to apply the tDNA-PCR technique on different capillary electrophoresis equipment. Milk samples were collected from 416 does in 5 Californian dairy goat herds on 3 occasions during lactation. In total, 219 CNS isolates were identified at the species level with tDNA-PCR and subjected to the API 20 Staph identification test kit (API Staph; bioMérieux, Durham, NC). If the same species was isolated multiple times from the same udder gland, only the first isolate was used for further analyses, resulting in 115 unique CNS isolates. According to the tDNA-PCR test, the most prevalent CNS species were Staphylococcus epidermidis, Staphylococcus caprae, and Staphylococcus simulans. Typeability with API staph was low (72%). Although the API Staph test was capable of identifying the majority of Staph. epidermidis and Staph. caprae isolates, sensitivity for identification of Staph. simulans was low. The true positive fraction was high for the 3 most prevalent species. It was concluded that the overall performance of API Staph in differentiating CNS species from goat milk was moderate to low, mainly because of the low typeability, and that genotypic methods such as tDNA-PCR are preferred.  相似文献   

9.
10.
《Journal of dairy science》2019,102(12):11439-11448
Coagulase-negative staphylococci (CNS) are one of the most common bovine mastitis pathogens found worldwide. In this study, we investigated the prevalence and distribution of CNS species in mastitis milk samples and further characterized the methicillin-resistant (MR) CNS. A total of 311 CNS were isolated from 3,692 quarter milk samples from 1,373 dairy cattle at 81 farms between 2013 and 2017. Further evaluation of the CNS isolates revealed 14 CNS species among the samples and 3 predominant species—namely, Staphylococcus chromogenes, Staphylococcus simulans, and Staphylococcus epidermidis. Resistance was higher in S. epidermidis than in other CNS species except for resistance against oxacillin in Staphylococcus sciuri. Resistance to β-lactams was the most common in all CNS species (8.4% in ampicillin, 21.2% in oxacillin, and 13.5% in penicillin). Conversely, only minimal resistance to cephalothin, ceftiofur, and pirlimycin/novobiocin was found. Twenty-one isolates from 4 species were mecA-carrying MRCNS strains, including 18 S. epidermidis and 1 each of S. sciuri, Staphylococcus equorum, and Staphylococcus hominis. The majority of the mecA-carrying MRCNS isolates were produced in the biofilm. Furthermore, multidrug-resistant sequence type 179 isolate produced the strongest biofilm. Seven genotypes were detected in the 18 MR S. epidermidis strains, the most predominant of which persisted on a farm for 2 yr. Our findings for the antimicrobial susceptibility profiles and genotypic characterization of the MRCNS isolates could provide valuable information for controlling the spread of resistance and the selection of appropriate antimicrobial therapies for mastitis in the future. Further, strategic antibiotic use for mastitis treatment and hygienic management practices aimed at the prevention of the growth of resistant bacteria are urgently needed on dairy farms.  相似文献   

11.
The aim of this study was to investigate whether the main coagulase-negative staphylococci (CNS) species involved in bovine intramammary infections (IMI) possess specific characteristics that promote colonization of the udder. Virulence markers associated with biofilm formation, antimicrobial resistance, and biocide tolerance were compared between typically contagious CNS species (Staphylococcus chromogenes, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus simulans) and those rarely causing IMI (Staphylococcus sciuri, Staphylococcus equorum, and others) to find possible associations with pathogenicity. Coagulase-negative staphylococci isolates (n = 366) belonging to 22 different species were analyzed by PCR for the presence of the biofilm-associated genes bap and icaA, and the methicillin resistance gene mecA. A selection of 82 isolates was additionally tested for their susceptibility to 5 antibiotics and 2 commercial teat dip products. Minimum inhibitory concentrations of antimicrobials were determined by Etest (AB bioMérieux, Marcy l’Etoile, France), and a microdilution method was optimized to determine minimum biocidal concentrations of teat dips. The bap, icaA, and mecA genes were detected significantly more in isolates from CNS species typically living in the cows’ environment than in isolates from IMI-causing species. Antimicrobial resistance was mainly against erythromycin (23%) or oxacillin (16%), and was detected more often in the environmental species. The isolates least susceptible to the teat dips belonged to the IMI-causing species Staph. chromogenes and Staph. simulans. We concluded that carriage of biofilm genes and antimicrobial resistance were not associated with the ability to colonize the mammary gland because free-living CNS species constituted a more significant reservoir of biofilm and resistance determinants than did IMI-causing species. In contrast, increased tolerance to biocides may favor the establishment of bovine IMI by some CNS species.  相似文献   

12.
The effect of non-aureus staphylococci (NAS) in bovine mammary health is controversial. Overall, NAS intramammary infections (IMI) increase somatic cell count (SCC), with an effect categorized as mild, mostly causing subclinical or mild to moderate clinical mastitis. However, based on recent studies, specific NAS may affect the udder more severely. Some of these apparent discrepancies could be attributed to the large number of species that compose the NAS group. The objectives of this study were to determine (1) the SCC of quarters infected by individual NAS species compared with NAS as a group, culture-negative, and major pathogen-infected quarters; (2) the distribution of NAS species isolated from quarters with low SCC (<200,000 cells/mL) and high SCC (≥200,000 cells/mL), and clinical mastitis; and (3) the prevalence of NAS species across quarters with low and high SCC. A total of 5,507 NAS isolates, 3,561 from low SCC quarters, 1,873 from high SCC quarters, and 73 from clinical mastitis cases, were obtained from the National Cohort of Dairy Farms of the Canadian Bovine Mastitis Research Network. Of quarters with low SCC, high SCC, or clinical mastitis, 7.6, 18.5, and 4.3% were NAS positive, respectively. The effect of NAS IMI on SCC was estimated using mixed-effect linear regression; prevalence of NAS IMI was estimated using Bayesian analyses. Mean SCC of NAS-positive quarters was 70,000 cells/mL, which was higher than culture-negative quarters (32,000 cells/mL) and lower than major pathogen-positive quarters (129,000 to 183,000 cells/mL). Compared with other NAS species, SCC was highest in quarters positive for Staphylococcus capitis, Staphylococcus gallinarum, Staphylococcus hyicus, Staphylococcus agnetis, or Staphylococcus simulans. In NAS-positive quarters, Staphylococcus xylosus (12.6%), Staphylococcus cohnii (3.1%), and Staphylococcus equorum (0.6%) were more frequently isolated from quarters with low SCC than other NAS species, whereas Staphylococcus sciuri (14%) was most frequently isolated from clinical mastitis cases. Finally, in NAS-positive quarters, Staphylococcus chromogenes, S. simulans, Staphylococcus epidermidis, and Staphylococcus haemolyticus were isolated with similar frequency from among low SCC and high SCC quarters and clinical mastitis cases. Staphylococcus chromogenes, S. simulans, S. xylosus, S. haemolyticus, S. epidermidis, S. agnetis, Staphylococcus arlettae, S. capitis, S. gallinarum, S. sciuri, and Staphylococcus warneri were more prevalent in high than in low SCC quarters. Because the NAS are a large, heterogeneous group, considering them as a single group rather than at the species, or even subspecies level, has undoubtedly contributed to apparent discrepancies among studies as to their distribution and importance in IMI and mastitis.  相似文献   

13.
Bacteriological status, evaluation of udder symmetry, udder hygiene, and teat end scores of 92 dairy cows were assessed on 3 Swiss dairy farms in a longitudinal 1-yr study to determine risk factors for intramammary infection (IMI) with coagulase-negative staphylococci (CNS) species. Farm visits were performed monthly including sterile quarter milk sampling and udder evaluation of all lactating cows. Milk samples were evaluated for the presence of staphylococci using selective agar plates. Species identification was performed using MALDI-TOF mass spectrometry. Intramammary infection was defined as milk samples having ≥100 cfu per mL of milk according to culture results. Overall, 3,151 quarter samples were included in the statistical analysis. Staphylococcus chromogenes, Staphylococcus haemolyticus, Staphylococcus xylosus, and a Staphylococcus warneri-like species were the 4 most prevalent CNS species found. Hierarchical multivariable logistic regression models were built to evaluate risk factors for species-specific CNS IMI. Risk factors for Staph. chromogenes IMI were presence in herd B, the period from June 2014 to August 2014 and December 2014 to February 2015, and presence of udder edema. For Staph. haemolyticus, the relevant risk factor included coinfection with Staph. xylosus coinfection with other than the above-mentioned CNS species (“others”) and the period from June 2014 to November 2014. Coinfection with Staph. haemolyticus and “others,” the periods from June 2014 to August 2014 and December 2014 to February 2015, early phase of lactation (1–60 d in milk), and belonging to herd B were significantly associated with Staph. xylosus IMI. Mid and late lactation, coinfection with Staph. xylosus, and the period September 2014 to May 2015 were identified as significant risk factors for Staph. warneri-like IMI. For Staph. chromogenes, 60.6 and 26% of the variance was observed at the quarter and cow level, respectively, whereas for the other investigated species the highest variance was observed at the sample level. The predominant species within herds differed and was most pronounced for the Staph. warneri-like species.  相似文献   

14.
The aim of this study was to determine risk factors for bovine intramammary infection (IMI) associated with the most common bacterial species in Finland. Large databases of the Finnish milk-recording system and results of microbiological analyses of mastitic milk samples from Valio Ltd. (Helsinki, Finland) were analyzed. The study group comprised 29,969 cows with IMI from 4,173 dairy herds. A cow with a quarter milk sample in which DNA of target species was detected in the PathoProof Mastitis PCR Assay (Thermo Fisher Scientific, Waltham, MA) was determined to have IMI. Only cows with IMI caused by the 6 most common pathogens or groups of pathogens, coagulase-negative staphylococci (CNS), Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, and Escherichia coli, were included. The control group comprised 160,176 IMI-free cows from the same herds as the study group. A multilevel logistic regression model was used to study herd- and cow-specific risk factors for incidence of IMI. Pathogen-specific results confirmed those of earlier studies, specifically that increasing parity increases prevalence of IMI regardless of causative pathogen. Holsteins were more susceptible to IMI than Nordic Reds except when the causative pathogen was CNS. Occurrence of IMI caused by C. bovis was not related to milk yield, in contrast to IMI caused by all other pathogens investigated. Organic milk production was associated with IMI only when the causative pathogen of IMI was Staph. aureus; Staph. aureus IMI was more likely to occur in conventional than in organic production. Cows in older freestall barns with parlor milking had an increased probability of contracting an IMI compared with cows in tiestall barns or in new freestall barns with automatic milking. This was the case for all IMI, except those caused by CNS, the prevalence of which was not associated with the milking system, and IMI caused by Staph. aureus, which was most common in cows housed in tiestall barns. A better breeding index for milk somatic cell count was associated with decreased occurrence of IMI, indicating that breeding for improved udder health has been successful in reducing the incidence of IMI caused by the most common pathogens in Finland. In the Finnish dairy sector, the importance of other measures to control IMI will increase as the Holstein breed progressively takes the place of the Nordic Red breed. Attention should be paid to hygiene and cleanliness, especially in old freestall barns. Based on our results, the increasing prevalence of automatic milking is not a reason for special concern.  相似文献   

15.
The aim of this review is to assess the effect of coagulase-negative staphylococci (CNS) species on udder health and milk yield in ruminants, and to evaluate the capacity of CNS to cause persistent intramammary infections (IMI). Furthermore, the literature on factors suspected of playing a role in the pathogenicity of IMI-associated CNS, such as biofilm formation and the presence of various putative virulence genes, is discussed. The focus is on the 5 CNS species that have been most frequently identified as causing bovine IMI using reliable molecular identification methods (Staphylococcus chromogenes, Staphylococcus simulans, Staphylococcus haemolyticus, Staphylococcus xylosus, and Staphylococcus epidermidis). Although the effect on somatic cell count and milk production is accepted to be generally limited or nonexistent for CNS as a group, indications are that the typical effects differ between CNS species and perhaps even strains. It has also become clear that many CNS species can cause persistent IMI, contrary to what has long been believed. However, this trait appears to be quite complicated, being partly strain dependent and partly dependent on the host's immunity. Consistent definitions of persistence and more uniform methods for testing this phenomenon will benefit future research. The factors explaining the anticipated differences in pathogenic behavior appear to be more difficult to evaluate. Biofilm formation and the presence of various staphylococcal virulence factors do not seem to (directly) influence the effect of CNS on IMI but the available information is indirect or insufficient to draw consistent conclusions. Future studies on the effect, persistence, and virulence of the different CNS species associated with IMI would benefit from using larger and perhaps even shared strain collections and from adjusting study designs to a common framework, as the large variation currently existing therein is a major problem. Also within-species variation should be investigated.  相似文献   

16.
Prepartum intramammary treatment with antimicrobials of end-term dairy heifers has frequently been proposed as a practice to reduce the prevalence of intramammary infections (IMI) at calving. From a safety standpoint for both animal and administrator, systemic treatment is preferred. A clinical trial was conducted on heifers from 10 well-managed, commercial dairy farms with a low prevalence of heifer mastitis. The aim was to assess both the short- and long-term effects of a systemic prepartum therapy with penethamate hydriodide on udder health and milk production. Because it was hypothesized that some herds would benefit more from this treatment than others, specific herd-level information was collected before the start of the actual trial to screen for and explain potential herd-specific treatment effects. Further, the effect of treatment on antimicrobial susceptibility of staphylococcal isolates was monitored. End-term heifers were either treated systemically (over 3 consecutive days) 2 wk before expected calving date with penethamate hydriodide (n = 76) or remained untreated (n = 73). Systemic prepartum treatment of end-term heifers with penethamate hydriodide resulted in fewer IMI in early lactation. However, all 6 cases of clinical mastitis in early lactation occurred in the treatment group [Streptococcus uberis (n = 1), Corynebacterium bovis (n = 1), Staphylococcus aureus (n = 1); 1 sample was contaminated; 2 samples remained culture negative]. No long-term treatment effects (from 4 to 120 d in milk) on milk production, udder health, or culling hazard during later lactation were detected, although treated heifers belonging to herds classified as having low-yielding heifers out-produced the control heifers. Moreover, penicillin susceptibility of staphylococci isolated from milk samples of treated or control heifers did not differ. Herds with a low prevalence of heifer mastitis are not likely to benefit from prepartum systemic antimicrobial treatment of the end-term heifers.  相似文献   

17.
The objective of this study was to investigate the ability of a milk line sampling device to obtain a representative sample by comparing SCC and bacterial culture results between milk line and bulk tank samples for milk harvested from the same group of cows at the same milking. A total of 42 paired milk line and bulk tank samples were collected at separate milking events from 21 different herds. Concordance correlation coefficients showed a high level of agreement between the two sample types, with values ranging between 0.74 and 0.99 for all parameters and bacterial species measured. ANOVA showed that SCC and bacterial culture results for Streptococcus agalactiae, Staphylococcus aureus, Streptococcus non-agalactiae, Coliforms, and coagulase-negative staphylococci were neither numerically or statistically different between milk line and bulk tank samples. KAPPA analysis showed that overall agreement beyond chance between milk line and bulk tank samples in determining whether a herd was positive or negative for either Strep. agalactiae or Staph. aureus were 100 and 75%, respectively. While further research is needed to fully assess the utility of this tool for the purpose of bacterial culture, the results of this study suggest that the strategy of milk line sampling is a very promising monitoring tool. This sampling strategy should provide producers with inexpensive and timely information that will help to improve programs for monitoring milk quality and udder health in commercial dairy herds.  相似文献   

18.
《Journal of dairy science》2022,105(7):6261-6270
The purpose of this prospective observational study was to determine whether dairy cattle housing types were associated with staphylococcal and mammaliicoccal populations found on teat skin, bedding, and in bulk tank milk. Twenty herds (n = 10 sand-bedded freestall herds; n = 10 compost-bedded pack herds) were enrolled. Each herd was visited twice for sample collection, and at each visit, 5 niches were sampled, including bulk tank milk, composite teat skin swab samples collected before premilking teat preparation, composite teat skin swab samples collected after premilking teat preparation, unused fresh bedding, and used bedding. All samples were plated on Mannitol salt agar and Columbia blood agar and staphylococcal-like colonies were selected for further evaluation. Bacterial colonies were speciated using MALDI-TOF mass spectrometry. All species were grouped into 4 categories included host-adapted, opportunistic, environmental, and unclassified. Absolute numbers and proportions of each genus and species were calculated. Proportional data were compared between groups using Fisher's exact test. Data representing 471 staphylococcal-like organisms were analyzed. Overall, 27 different staphylococcal and mammaliicoccal species were identified. Staphylococcus chromogenes was the only species identified from all 20 farms. A total of 20 different staphylococcal-like species were identified from bulk tank milk samples with the most prevalent species being S. chromogenes, followed by Staphylococcus aureus and Mammaliicoccus sciuri. Overall, more staphylococcal and mammaliicoccal isolates were identified among used bedding than unused bedding. The increased numbers of isolates within used bedding were primarily from used sand bedding samples, with 79% (76/96) of used bedding isolates being identified from sand bedding and only 20.8% (20/96) from used compost-bedded pack samples. When comparing categories found among sample types, more unclassified species were found in used sand bedding than in used compost-bedded pack samples. This finding is possibly related to the composting temperatures resulting in reduced growth or destruction of bacterial species. The prevalence of S. aureus was high in bulk tank milk for all herds, regardless of herd type, which may represent the influence of unmeasured management factors. Overall, staphylococcal and mammaliicoccal species were highly prevalent among samples from both farm types.  相似文献   

19.
Elimination of selected mastitis pathogens during the dry period   总被引:1,自引:0,他引:1  
We aimed to evaluate the elimination of 4 different mastitis pathogens, Streptococcus agalactiae, Mycoplasma bovis, Staphylococcus aureus, and Streptococcus uberis, from infected udder quarters during the dry period using quantitative PCR. The second purpose of this study was to evaluate the association between milk haptoglobin (Hp) concentration and the presence of udder pathogens (Strep. agalactiae, Staph. aureus, M. bovis, and Strep. uberis) in udder quarter milk samples before and after dry period. Aseptic udder quarter milk samples (n = 1,001) were collected from 133 dairy cows at dry off and at the first milking after calving from 1 large dairy herd. Bacterial DNA of Strep. agalactiae, Staph. aureus, Strep. uberis, and M. bovis in the udder quarter milk samples was identified with commercial quantitative PCR analysis Mastitis 4B (DNA Diagnostic A/S, Risskov, Denmark). Milk Hp concentration (mg/L) was measured from udder quarter milk samples. The elimination rates during the dry period for M. bovis, Staph. aureus, Strep. agalactiae, and Strep. uberis were 86.7, 93.6, 96.2, and 100.0%, respectively. The new IMI rate was 3.0% for M. bovis, 2.9% for Staph. aureus, 2.4% for Strep. agalactiae, and 3.1% for Strep. uberis. The milk Hp concentration was significantly higher in udder quarter milk samples with blood and in samples positive for Strep. agalactiae at dry off and for Staph. aureus postcalving. Elevated milk Hp concentration was not associated with the presence of M. bovis in the udder quarter milk samples. In conclusion, elimination of Staph. aureus, Strep. agalactiae, and Strep. uberis during the dry period was high; the elimination of M. bovis from infected udder quarters was lower, but probably spontaneous. Additionally, milk Hp concentration may be used as a marker for udder inflammation when combined with the bacteriological results at dry off and postpartum.  相似文献   

20.
《Journal of dairy science》2022,105(4):3574-3587
Despite the importance of Streptococcus dysgalactiae ssp. dysgalactiae (SDSD) as an udder pathogen, the reservoir and epidemiological characteristics of this bacterium are largely unexplored. The aims of this study were to investigate risk factors for SDSD intramammary infections (SDSD-IMI) in Norwegian bovine dairy herds, identify sources of SDSD on animals and in the environment, and elucidate the genetic diversity of SDSD isolates. Data from herd recordings and a questionnaire were used to investigate herd-level risk factors for SDSD-IMI in 359 freestall dairy herds. Seven herds with a suspected high prevalence of SDSD-IMI were visited to sample extramammary sources (e.g., skin, wounds, mucous membranes, and freestall environment). Bacterial isolates were whole-genome sequenced to investigate the distribution of SDSD genotypes within herds and to assess the phylogenetic relationship between SDSD isolates from 27 herds across Norway. Risk factors for high incidence of SDSD-IMI in freestall dairy herds were related to housing, including closed flooring in alleys and rubber mats in cubicle bases. Parlor milking was also a risk factor compared with automatic milking systems. From herd visits, a considerable proportion of extramammary samples were SDSD positive, particularly from wounds and skin of the animals and the cubicle bases. Samples from mucous surfaces (nostrils, rectum, and vagina) and water troughs were least frequently positive. Eight multilocus sequence types (ST) were identified among the sequenced isolates from 27 herds, and phylogenetic analyses revealed 8 clades corresponding to ST. No significant association was identified between sampling site (milk, body sites, and environment) and ST. In 4 of 6 herds from which 5 or more isolates were available, one ST dominated and was found in milk and extramammary samples. One ST (ST453) was found in 15 of 27 herds, which implies that this is a widely distributed and possibly a bovine-adapted strain. Findings in this study suggest that SDSD is a cow-adapted opportunist with potential for contagious transmission, and that the freestall environment is likely to play a role in transmission between cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号