首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compared to widening usage of CNG in commercial gasoline engines, insufficient but increasing number of studies have appeared in open literature during last decades while engine characteristics need to be quantified in exact numbers for each specific fuel converted engine. In this study, a dual sequential spark ignition engine (Honda L13A4 i-DSI) is tested separately either with gasoline or CNG at wide open throttle. This specific engine has unique features of dual sequential ignition with variable timing, asymmetrical combustion chamber, and diagonally positioned dual spark-plug. Thus, the engine led some important engine technologies of VTEC and VVT. Tests are performed by varying the engine speed from 1500 rpm to 4000 rpm with an increment of 500 rpm. The engine’s maximum torque speed of 2800 rpm is also tested. For gasoline and CNG fuels, engine performance (brake torque, brake power, brake specific fuel consumption, brake mean effective pressure), emissions (O2, CO2, CO, HC, NOx, and lambda), and the exhaust gas temperature are evaluated. In addition, numerical engine analyses are performed by constructing a 1-D model for the entire test rig and the engine by using Ricardo-Wave software. In the 1-D engine model, same test parameters are analyzed, and same test outputs are calculated. Thus, the test and the 1-D engine model are employed to quantify the effects of gasoline and CNG fuels on the engine performance and emissions for a unique engine. In general, all test and model results show similar and close trends. Results for the tested commercial engine show that CNG operation decreases the brake torque (12.7%), the brake power (12.4%), the brake mean effective pressure (12.8%), the brake specific fuel consumption (16.5%), the CO2 emission (12.1%), the CO emission (89.7%). The HC emission for CNG is much lower than gasoline. The O2 emission for CNG is approximately 55.4% higher than gasoline. The NOx emission for CNG at high speeds is higher than gasoline. The variation percentages are the averages of the considered speed range from 1500 rpm to 4000 rpm.  相似文献   

2.
In this work, a single cylinder conventional spark ignition engine was converted to operate with hydrogen using the timed manifold fuel injection technique. A solenoid operated gas injector was used to inject hydrogen into the inlet manifold at the specified time. A dedicated electronic circuit developed for this work was used to control the injection timing and duration. The spark timing was set to minimum advance for best torque (MBT). The engine was operated at the wide-open throttle condition. For comparison of results, the same engine was also run on gasoline.The performance and emission characteristics with hydrogen and gasoline are compared. From the results, it is found that there is a reduction of about 20% in the peak power output of the engine when operating with hydrogen. The brake thermal efficiency with hydrogen is about 2% greater than that of gasoline. A lean limit equivalence ratio of about 0.3 could be attained with hydrogen as compared to 0.83 with gasoline. CO, CO2 and HC emissions were negligible with hydrogen operation. However, for hydrogen operation, NOx emission was four times higher than that of gasoline at full load power. The best ignition timing for hydrogen was much retarded when compared to gasoline. The effect of hydrogen injection pressure was also studied and no specific changes were observed. The effect of operating speed was also studied.  相似文献   

3.
In this study, effects of hydrogen-addition on the performance and emission characteristics of Methanol-Gasoline blends in a spark ignition (SI) engine were investigated. Experiments were conducted with a four-cylinder and four stroke spark ignition engine. Performance tests were performed via measuring brake thermal efficiency, brake specific fuel consumption, cylinder pressure and exhaust emissions (CO, CO2, HC, NOx). These performance metrics were analyzed under three engine load conditions (no load, 50% and 100%) with a constant speed of 2000 rpm. Methanol was added to the gasoline up to 15% by volume (5%, 10% and 15%). Besides, hydrogen was added to methanol-gasoline mixtures up to 15% by volume (3%, 6%, 9% and 15%). Results of this study showed that methanol addition increases BSFC by 26% and decreases thermal efficiency by 10.5% compared to the gasoline. By adding hydrogen to the methanol - gasoline mixtures, the BSFC decreased by 4% and the thermal efficiency increased by 2% compared to the gasoline. Hydrogen addition to methanol – gasoline mixtures reduces exhaust emissions by about 16%, 75% and 15% of the mean average values of HC, CO and CO2 emissions, respectively. Lastly, ?t was concluded that hydrogen addition improves combustion process; CO and HC emissions reduce as a result of the leaning effect caused by the methanol addition; and CO2 and NOx emission increases because of the improved combustion.  相似文献   

4.
The addition of hydrogen is an effective way for improving the gasoline engine performance at lean conditions. In this paper, an experiment aiming at studying the effect of hydrogen addition on combustion and emissions characteristics of a spark-ignited (SI) gasoline engine under various loads and lean conditions was carried out. An electronically controlled hydrogen port-injection system was added to the original engine while keeping the gasoline injection system unchanged. A hybrid electronic control unit was developed and applied to govern the spark timings, injection timings and durations of hydrogen and gasoline. The test was performed at a constant engine speed of 1400 rpm, which could represent the engine speed in the typical city-driving conditions with a heavy traffic. Two hydrogen volume fractions in the total intake of 0% and 3% were achieved through adjusting the hydrogen injection duration according to the air flow rate. At a specified hydrogen addition level, gasoline flow rate was decreased to ensure that the excess air ratios were kept at 1.2 and 1.4, respectively. For a given hydrogen blending fraction and excess air ratio, the engine load, which was represented by the intake manifolds absolute pressure (MAP), was increased by increasing the opening of the throttle valve. The spark timing for maximum brake torque (MBT) was adopted for all tests. The experimental results demonstrated that the engine brake mean effective pressure (Bmep) was increased after hydrogen addition only at low load conditions. However, at high engine loads, the hybrid hydrogen–gasoline engine (HHGE) produced smaller Bmep than the original engine. The engine brake thermal efficiency was distinctly raised with the increase of MAP for both the original engine and the HHGE. The coefficient of variation in indicated mean effective pressure (COVimep) for the HHGE was reduced with the increase of engine load. The addition of hydrogen was effective on improving gasoline engine operating instability at low load and lean conditions. HC and CO emissions were decreased and NOx emissions were increased with the increase of engine load. The influence of engine load on CO2 emission was insignificant. All in all, the effect of hydrogen addition on improving engine combustion and emissions performance was more pronounced at low loads than at high loads.  相似文献   

5.
The effects of hydrogen on the combustion characteristics, thermal efficiency, and emissions of a turbo gasoline direct-injection engine with exhaust gas recirculation (EGR) were investigated experimentally at brake mean effective pressures of 4, 6, and 8 bar at 2000 rpm. Four cases of hydrogen energy fraction (0%, 1%, 3% and 5%) of total fuel energy were studied. Hydrogen energy fraction of total fuel energy was hydrogen energy in the sum of energy of consumed gasoline and added hydrogen. The test results demonstrated that hydrogen addition improved the combustion speed and reduced cycle-to-cycle variation. In particular, cylinder-to-cylinder variation dramatically decreased with hydrogen addition at high EGR rates. This suggests that the operable EGR rate can be widened for a turbo gasoline direct-injection engine. The improved combustion and wider operable EGR rate resulted in enhanced thermal efficiency. However, the turbocharging effect acted in opposition to the thermal efficiency with respect to the EGR rate. Therefore, a different strategy to improve the thermal efficiency with EGR was required for the turbo gasoline direct-injection engine. HC and CO2 emissions were reduced but NOX emissions increased with hydrogen addition. The CO emissions as a function of engine load followed different trends that depended on the level of hydrogen addition.  相似文献   

6.
The comparative study on performance of the hydrogen/gasoline and hydrogen/n-butanol rotary engines was conducted in the present paper. Considering the stable operation of the engine, for both hydrogen/gasoline case and hydrogen/n-butanol case, the operating conditions were set at: 4000 rpm (engine speed), 35 kPa (intake pressure) and 30 °CA BTDC (spark timing). The total excess air ratio of mixture was maintained at 1.0 through all the tests. The testing results displayed that hydrogen enrichment improved performance of both gasoline and n-butanol rotary engines. To be more specific, brake thermal efficiency was increased, flame development and propagation periods were shortened, the coefficient of variation in flame propagation period was decreased, and the emissions of HC and CO were decreased. NOx emissions were mildly increased after hydrogen addition. Besides, hydrogen/n-butanol rotary engine possessed the similar performance to hydrogen/gasoline rotary engine.  相似文献   

7.
A comparative analysis is being performed of the engine performance and exhaust emission on a gasoline and compressed natural gas (CNG) fueled retrofitted spark ignition car engine. A new 1.6 L, 4-cylinder petrol engine was converted to the computer incorporated bi-fuel system which operated with either gasoline or CNG using an electronically controlled solenoid actuated valve mechanism. The engine brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature and exhaust emissions (unburnt hydrocarbon, carbon mono-oxide, oxygen and carbon dioxides) were measured over a range of speed variations at 50% and 80% throttle positions through a computer based data acquisition and control system. Comparative analysis of the experimental results showed 19.25% and 10.86% reduction in brake power and 15.96% and 14.68% reduction in brake specific fuel consumption (BSFC) at 50% and 80% throttle positions respectively while the engine was fueled with CNG compared to that with the gasoline. Whereas, the retrofitted engine produced 1.6% higher brake thermal efficiency and 24.21% higher exhaust gas temperature at 80% throttle had produced an average of 40.84% higher NOx emission over the speed range of 1500–5500 rpm at 80% throttle. Other emission contents (unburnt HC, CO, O2 and CO2) were significantly lower than those of the gasoline emissions.  相似文献   

8.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

9.
The combustion process within the cylinder directly influences the thermal efficiency and performance of the engines. As for the rotary engine, the long-narrow combustion chamber prevents the mixture from fully burning, which worsens the performance of the rotary engine. As a fuel with excellent properties, hydrogen can improve the combustion of the original engine. In this paper, improvements in combustion of a gasoline rotary engine by hydrogen supplement under different operating conditions were experimentally investigated. The experiment was conducted on a modified hydrogen-gasoline dual-fuel rotary engine equipped with an electronically-controlled fuel injection system. An electronic control module was specially made to command the fuel injection, excess air ratio and hydrogen volumetric fraction. Integral heat release fraction (IHRF) was employed to evaluate the combustion of the tested engine. The tested engine was first run at the idle speed of 2400 rpm and then operated at 4500 rpm to investigate the combustion of the hydrogen-blended gasoline rotary engine under different hydrogen volume fractions, excess air ratios and spark timings. The testing results demonstrated that the combustion of the gasoline rotary engine were all improved when the hydrogen was blended into the chamber under all tested conditions.  相似文献   

10.
In the present paper, the cyclic variations of a hydrogen-blended gasoline rotary engine operated under various conditions were experimentally investigated. The experiments were carried out on a modified hydrogen-gasoline dual-fuel rotary engine equipped with an electronically-controlled fuel injection system. An electronic control module was specially made to command the fuel injection, excess air ratio and hydrogen volumetric fraction. The tested engine was first run at idle condition with a speed of 2400 rpm and then operated at 4500 rpm to investigate the cyclic variations of a hydrogen-enriched gasoline rotary engine under different hydrogen volumetric percentages in the total intake, excess air ratios and spark timings. The experimental results demonstrated that the coefficient of variations (in peak pressure, engine speed, flame development period and flame propagation period) of the gasoline rotary engine were distinctly decreased with the increase of hydrogen volume fraction under all the tested conditions. In particular, at idle and stoichiometric conditions, the coefficient of variation in CA0-10 and CA10-90 were reduced from 9.25% to 5.01%, 15.40% to 8.70%, respectively.  相似文献   

11.
This study conducts an experimental investigation of spark ignition (SI) engine characteristics using gasoline blended with Acetone-Butanol-Ethanol (ABE) that act as hydrogen and oxygen carriers. The number of experiments is planned and executed according to a design of experiments with full-factorial design, wherein ABE blend percentage and speed are taken as input parameters and brake thermal efficiency (BTE), emissions of carbon monoxide (CO), hydrocarbon (HC), and oxides of nitrogen (NOx) are taken as the responses. In the present study, a multi-objective optimization technique, Particle Swarm Optimization (PSO), is used to optimize spark ignition engine performance and emission parameters. The results predicted by the regression model are compared with the experimental results. PSO is used to study the Pareto front of BTE, CO, HC, and NOx, respectively. The results indicated that when the engine is run at 1500 rpm, with the fuel blend having 5.4% ethanol, a minimum value of 0.58% CO, 211 ppm of HC are obtained, giving a maximum BTE of 28%. Similarly, when the engine is run at 2264 rpm with a 5% ethanol blend, minimum NOx emission of 1029 ppm and a maximum BTE of 30% are obtained.  相似文献   

12.
The n-butanol fuel, as a renewable and clean biofuel, could ease the energy crisis and decrease the harmful emissions. As another clean and renewable energy, hydrogen properly offset the high HC emissions and the insufficient of dynamic property of pure n-butanol fuel in SI engines, because of the high diffusion coefficient, high adiabatic flame velocity and low heat value. Hydrogen direct injection not only avoids backfire and lower intake efficiency but also promotes to form in-cylinder stratified mixture, which is helpful to enhance combustion and reduce emissions. This experimental study focused on the combustion and emissions characteristics of a hydrogen direct injection stratified n-butanol engine. Three different hydrogen addition fractions (0%, 2.5%, 5%) were used under five different spark timing (10° ,15° ,20° ,25° ,30° CA BTDC). Engine speed and excess air ratio stabled at 1500 rpm and 1.2 respectively. The direct injection timing of the hydrogen was optimized to form a beter stratified mixture. The obtained results demonstrated that brake power and brake thermal efficiency are increased by addition hydrogen directly injected. The BSFC is decreased with the addition of hydrogen. The peak cylinder pressure and the instantaneous heat release rate raises with the increase of the hydrogen addition fraction. In addition, the HC and CO emissions drop while the NOx emissions sharply rise with the addition of hydrogen. As a whole, with hydrogen direct injection, the power and fuel economy performance of n-butanol engine are markedly improved, harmful emissions are partly decreased.  相似文献   

13.
In this study, initially, a single cylinder, naturally aspirated, spark ignition engine was loaded with AC engine dynamometer and a spark plug type engine transducer was used to obtain in-cylinder pressure. The test engine was operated with gasoline fuel at full load and different engine speeds (3100, 3200, 3300, 3400 and 3450 rpm). Secondly, using obtained engine performance, emission values and in-cylinder pressure, a one dimensional engine model was built and validated by an engine performance and emission analysis software (AVL-Boost). After the validation of single dimensional theoretical engine model, a comparison was made between the emission, performance and combustion (in-cylinder pressure, rate of heat release) values of operations with pure hydrogen fuel and such values of the operations with unleaded gasoline. The emissions of CO and total hydrocarbons (THC) were negligible with using hydrogen as fuel in SI engine. A dramatic increase in NOx emissions was obtained with using hydrogen as fuel. However, by using hydrogen in lean conditions, NOx emissions were taken under control by means of wide flammability limits of hydrogen.  相似文献   

14.
Hydrogen has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fueled spark ignition (SI) engines. In this paper, an experimental study was carried out on a four-cylinder 1.6 L engine to explore the effect of hydrogen addition on enhancing the engine lean operating performance. The engine was modified to realize hydrogen port injection by installing four hydrogen injectors in the intake manifolds. The injection timings and durations of hydrogen and gasoline were governed by a self-developed electronic control unit (DECU) according to the commands from a calibration computer. The engine was run at 1400 rpm, a manifold absolute pressure (MAP) of 61.5 kPa and various excess air ratios. Two hydrogen volume fractions in the total intake of 3% and 6% were applied to check the effect of hydrogen addition fraction on engine combustion. The test results showed that brake thermal efficiency was improved and kept roughly constant in a wide range of excess air ratio after hydrogen addition, the maximum brake thermal efficiency was increased from 26.37% of the original engine to 31.56% of the engine with a 6% hydrogen blending level. However, brake mean effective pressure (Bmep) was decreased by hydrogen addition at stoichiometric conditions, but when the engine was further leaned out Bmep increased with the increase of hydrogen addition fraction. The flame development and propagation durations, cyclic variation, HC and CO2 emissions were reduced with hydrogen addition. When excess air ratio was approaching stoichiometric conditions, CO emission tended to increase with the addition of hydrogen. However, when the engine was gradually leaned out, CO emission from the hydrogen-enriched engine was lower than the original one. NOx emissions increased with the increase of hydrogen addition due to the raised cylinder temperature.  相似文献   

15.
Fusel oil produced in small quantities as a by-product obtained through the fermentation of some agricultural products. Thereby the possibility of using fusel oil to replace gasoline or blending at high percentage unavailing. The fusel oil has both high research and motor octane rating RON and MON (106 and 103). This paper examines the impact of using fusel oil as an octane enhancer for gasoline fuel on the performance, combustion and emissions of 4-cylinder spark ignition engine. The test was achieved at two ratios of fusel oil -gasoline blends and pure gasoline at different speeds and loads. The fusel oil is showed to be a novel and useful octane enhancer for gasoline blendstocks in a spark ignition engine. Furthermore, fusel oil is a suitable candidate fusel for octane enhancer on-demand applications and further experimentation in spark ignition engine warranted. The high octane number and oxygen content of fusel oil lead to improving the engine performance under high engine speed and rich mixture (? < 1) due to the complete combustion. The brake power and BTE enhanced with fusel oil compared to gasoline while BSFC increased. The NOx emission decreased as the fusel oil used While the HC and CO2 emissions increased.  相似文献   

16.
The aim of this paper is investigation of the effect of hydrogen on engine performance and emissions characteristics of an SI engine, having a high compression ratio, fuelled by HCNG (hydrogen enriched compressed natural gas) blend. The experiments were carried out at 1500, 2000 and 2500 rpm under full load conditions of a modified Isuzu 3.9 L engine, having a compression ratio of 12.5. The engine brake power, brake thermal efficiency, combustion analysis and emissions parameters were realized at 5, 10 15 and 20 deg. CA BTDC (crank angle before top dead center) ignition timings and in excess air ratios of 0.9–1.3 fuelled by hydrogen enriched compressed natural gas (100/0, 95/5, 90/10 and 80/20 of % natural gas/hydrogen).The experimental results showed that the maximum power values were generally obtained with HCNG5 (5% hydrogen in natural gas) fuel. The optimum ignition timing that was obtained according to the maximum brake torque was retarded by the addition of hydrogen to CNG (compressed natural gas), while it was advanced by increasing the engine speed. Furthermore, it was observed that the BTE (brake thermal efficiency) generally declined with the hydrogen addition to compressed natural gas and increasing the engine speed. Additionally, the curves of cylinder pressure and ROHR (rate of heat release values) generally closed to top dead center with the increasing of the hydrogen fraction in the blend and a decreasing engine speed. The hydrocarbon and carbon monoxide emissions generally obtained were lower than the Euro-5 and Euro-6 standards.  相似文献   

17.
Butanol could reduce emissions and alleviate the energy crisis as a bio-fuel used on engines, but the production cost problem limits the application of butanol. During the butanol production, ABE (Acetone-Butanol-Ethanol) is a critical intermediate product. Many studies researched the direct application of ABE on engines instead of butanol to solve the production cost problem of butanol. ABE has the defects of large ignition energy and vaporization heat. Hydrogen is a gaseous fuel with small ignition energy and high flame temperature. In this research, ABE port injection combines with hydrogen direct injection, forming a stratified state of the hydrogen-rich mixture around the spark plug. The engine speed is 1500 rpm, and λ is 1. Five αH2 (hydrogen blending fractions: 0, 5%, 10%, 15%, 20%) and five spark timings (5°, 10°, 15°, 20°, 25° CA BTDC) are studied to observe the effects of them on combustion and emissions of the test engine. The results show that hydrogen addition increases the maximum cylinder pressure and maximum heat release rate, increases the maximum cylinder temperature and IMEP, but the exhaust temperature decreases. The flame development period and flame propagation period shorten after adding hydrogen. Hydrogen addition improves HC and CO emissions but increases NOx emissions. Particle emissions decrease distinctly after hydrogen addition. Hydrogen changes the combustion properties of ABE and improves the test engine's power and emissions. The combustion in the cylinder becomes better with the increase of αH2, but a further increase in αH2 beyond 5% brings minor improvements on combustion.  相似文献   

18.
The modifications performed to convert the spark ignition gasoline-fueled internal combustion engine of a Volkswagen Polo 1.4 to run with hydrogen are described. The car is representative of small vehicles widely used for both city and interurban traffic. Main changes included the inlet manifold, gas injectors, oil radiator and the electronic management unit. Injection and ignition advance timing maps were developed for lean mixtures with values of the air to hydrogen equivalence ratio (λ) between 1.6 and 3. The established engine control parameters allowed the safe operation of the hydrogen-fueled engine (H2ICE) free of knock, backfire and pre-ignition as well with reasonably low NOx emissions. The H2ICE reached best brake torque of 63 Nm at 3800 rpm and maximum brake power of 32 kW at 5000 rpm. In general, the brake thermal efficiency of the H2ICE is greater than that of gasoline-fueled engine except for the H2ICE working at very lean conditions (λ = 2.5) and high speeds (above 4000 rpm). A significant effect of the spark advance on the NOx emissions has been found, specially for relatively rich mixtures (λ < 2). Small changes of spark advance with respect to the optimum value for maximum brake torque give rise to an increase of pollutant emissions. It has been estimated that the hydrogen-fueled Volkswagen Polo could reach a maximum speed of 140 km/h with the adapted engine. Moreover, there is enough reserve of power for the vehicle moving on typical urban routes and routes with slopes up to 10%.  相似文献   

19.
In this study, the effects of ignition advance on dual sequential ignition engine characteristics and exhaust gas emissions for hydrogen enriched butane usage and lean mixture were investigated numerically and experimentally. The main purpose of this study is to reveal the effects of h-butane application in a commercial spark ignition gasoline engine. One cylinder of the commercially dual sequential spark ignition engine was modeled in the Star-CD software, taking into account all the components of the combustion chamber (intake-exhaust manifold connections, intake-exhaust valves, cylinder, cylinder head, piston, spark plugs). Angelberger wall approximation, k-ε RNG turbulence model and G-equation combustion model were used for analysis. In the dual sequential spark ignition, the difference between the spark plugs was defined as 5° CAD. At the numerical analysis; 10.8:1 compression ratio, 1.3 air-fuel ratio, 2800 rpm engine speed, 0.0010 m the flame radius and 0.0001 m the flame thickness were kept constant. The hydrogen-butane mixture was defined as 4%–96% by mass. In the analysis, the optimal ignition advance was determined by the working conditions. In addition, the effects of changes in ignition advance were examined in detail at lean mixture. For engine operating conditions under investigation, it has been determined that the 50° CAD ignition advance from the top dead center is the optimal ignition advance in terms of engine performance and emission balance. It has also been found that the NOx formation rises up as the ignition advance increases. The BTE values were approximately 12.01% higher than butane experimental results. The experimental BTE values for h-butane were overall 3.01% lower than h-butane numerical results.  相似文献   

20.
A comparative study on effects of homogeneous or stratified hydrogen on combustion and emissions was presented for a gasoline/hydrogen SI engine. Three kinds of injection modes (gasoline, gasoline plus homogeneous hydrogen and gasoline plus stratified hydrogen) and five excess air ratios were applied at low speed and low load on a dual fuel SI engine with hydrogen direct injection (HDI) and gasoline port injection. The results showed that, with the increase of excess air ratio, the brake thermal efficiency increases firstly then decreases and reaches the highest when the excess air ratio is 1.1. In comparison with pure gasoline, hydrogen addition can make the ignition stable and speed up combustion rate to improve the brake thermal efficiency especially under lean burn condition. Furthermore, it can reduce the CO and HC emissions because of more complete combustion, but produce more NOX emissions due to the higher combustion temperature. Since, in the gasoline plus stratified hydrogen mode, the hydrogen concentration near the sparking plug is denser than that of homogeneous hydrogen, the ignition is more stable and faster, which further speed up the combustion rate and improve the brake thermal efficiency. In the gasoline plus stratified hydrogen mode, the brake thermal efficiency increases by 0.55%, the flame development duration decreases by 1.0°CA, rapid combustion duration decreases by 1.3°CA and the coefficient of variation (COV) decreases by 9.8% on average than that of homogeneous hydrogen. However, in the gasoline plus stratified hydrogen mode, due to the denser hydrogen concentration near the sparking plug and leaner hydrogen concentration near the wall, the combustion temperature and the wall quenching distance increase, which make the NOX and HC emissions increase by 14.3% and 12.8% on average than that of homogeneous hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号