首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lu Y  Liu GL  Lee LP 《Nano letters》2005,5(1):5-9
The formation of high-density silver nanoparticles and a novel method to precisely control the spacing between nanoparticles by temperature are demonstrated for a tunable surface enhanced Raman scattering substrates. The high-density nanoparticle thin film is accomplished by self-assembling through the Langmuir-Blodgett (LB) technique on a water surface and transferring the particle monolayer to a temperature-responsive polymer membrane. The temperature-responsive polymer membrane allows producing a dynamic surface enhanced Raman scattering substrate. The plasmon peak of the silver nanoparticle film red shifts up to 110 nm with increasing temperature. The high-density particle film serves as an excellent substrate for surface-enhanced Raman spectroscopy (SERS), and the scattering signal enhancement factor can be dynamically tuned by the thermally activated SERS substrate. The SERS spectra of Rhodamine 6G on a high-density silver particle film at various temperatures is characterized to demonstrate the tunable plasmon coupling between high-density nanoparticles.  相似文献   

2.
In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star‐like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., “hairs”) with even length. Interestingly, amphiphilic star‐like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer “hairs” are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long‐term stability. This amphiphilic star‐like block copolymer nanoreactor‐based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self‐assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors.  相似文献   

3.
Huang J  Kim F  Tao AR  Connor S  Yang P 《Nature materials》2005,4(12):896-900
Significant advancement has been made in nanoparticle research, with synthetic techniques extending over a wide range of materials with good control over particle size and shape. A grand challenge is assembling and positioning the nanoparticles in desired locations to construct complex, higher-order functional structures. Controlled positioning of nanoparticles has been achieved in pre-defined templates fabricated by top-down approaches. A self-assembly method, however, is highly desirable because of its simplicity and compatibility with heterogeneous integration processes. Here we report on the spontaneous formation of ordered gold and silver nanoparticle stripe patterns on dewetting a dilute film of polymer-coated nanoparticles floating on a water surface. Well-aligned stripe patterns with tunable orientation, thickness and periodicity at the micrometre scale were obtained by transferring nanoparticles from a floating film onto a substrate in a dip-coating fashion. This facile technique opens up a new avenue for lithography-free patterning of nanoparticle arrays for various applications including, for example, multiplexed surface-enhanced Raman substrates and templated fabrication of higher-order nanostructures.  相似文献   

4.
The well-arrayed Pd and Au nanoparticle thin films were successfully prepared by making use of self-assembled PS-b-P4VP block copolymer (BCP) as a mask for the reduction of PdCl2 deposited on glass substrate. The films consisted of spherialcal nanoparticles with an average diameter of about 45 nm. For monitoring the size, shape and array formation of Pd nanopaticle films, this procedure was proved better to the conventional process in which PdCl2 impregnated in the channels of self assembled BCP film is reduced to form nanoparticle array. This observations of Pd nanoparticle array film formation is supported by the AFM and UV-VIS studies of Au nanoparticle array films formed by conventional method.  相似文献   

5.
We report a novel nanomanufacturing technique that incorporates patterned arrays built entirely from Fe?O? nanoparticles into a flexible and transparent polymer film. First, the nanoparticles are patterned using the enormous magnetic field gradients at the surface of commercial disk drive media, and then the resulting architecture is transferred to the surface of a polymer film by spin-coating and peeling. Since the particles are immobilized by the field gradients during the spin-coating process, the patterned array is preserved after peeling. To demonstrate the potential of this technology, we fabricate a 5 mm diameter all-nanoparticle diffraction grating capable of producing a white-light optical spectrum. We also demonstrate several extensions to this technology, where, by adding an external magnetic field during assembly, we create both periodic variations in topography, as well as a nanocomposite with two vertically and horizontally separated nanoparticle layers. As this technique leverages the nanometer resolution inherent in current magnetic recording technology, strong potential exists for low-cost nanomanufacturing of optical and electronic devices from a variety of nanomaterials with ~10 nm resolution.  相似文献   

6.
7.
We report the first method for synthesizing binary semiconductor materials by scanning probe block copolymer lithography (SPBCL) in desired locations on a surface. In this work, we utilize SPBCL to create polymer features containing a desired amount of Cd(2+), which is defined by the feature volume. When they are subsequently reacted in H(2)S in the vapor phase, a single CdS nanoparticle is formed in each block copolymer (BCP) feature. The CdS nanoparticles were shown to be both crystalline and luminescent. Importantly, the CdS nanoparticle sizes can be tuned since their diameters depend on the volume of the originally deposited BCP feature.  相似文献   

8.
The construction and fixation of ordered nanoparticle arrays allow not only the exploitation of the array's collective physical properties but also the possibility of manipulating discrete aggregates within a larger‐scale assembly scheme. A simple approach utilizing block copolymer thin films as templates and coordination chemistry as a mild crosslinking mechanism is reported by Shenhar, Rotello, and co‐workers on p. 2206. The cover image (by Nicholas Fischer) shows terpyridine‐functionalized gold nanoparticles organized in stripes on top of a microphase‐separated thin film of polystyrene‐block‐poly(methyl methacrylate) and crosslinked thorough the formation of iron–bisterpyridine complexes.  相似文献   

9.
This Review describes recent results on the precise spatial distribution control of metal and semiconductor nanoparticles into domains of microphase-separated block copolymers. Specific focus is directed towards selective incorporation into a specific microphase of a block copolymer. Details on theoretical aspects concerning nanoparticle incorporation as well as practical examples are given. Furthermore, examples on applications and technological aspects of the resulting nanoparticle/polymer nanocomposites are provided.  相似文献   

10.
Anti-reflective optical coatings incorporating nanoparticles   总被引:1,自引:0,他引:1  
This paper presents a simple approach for forming anti-reflective film stacks on plastic substrates employing aqueous colloidal dispersions of metal oxide nanoparticles. Results demonstrate that it is possible to fabricate a polymeric thin film of continuously tunable refractive index over a wide range by loading the film with varying concentrations of metal oxide nanoparticles. Specifically, the refractive index for the polymer film was tuned from 1.46 to 1.54 using silica nanoparticle loadings from 50 to 0?wt% and from 1.54 to 1.95 using ceria nanoparticle loadings from 0 to 90?wt%, respectively. The low and high refractive index layers are then combined to create an anti-reflective coating which exhibits a reflectance spectrum, abrasion resistance, haze and transmission values that compare well with those produced using state-of-the-art vacuum based techniques. Furthermore, the results show that it is possible to begin with aqueous dispersions and then dilute them with organic solvents for use in a spin coating method to prepare the polymer-metal oxide nanoparticle composite films.  相似文献   

11.
Abstract

A poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] block copolymer possessing a reactive acetal group at the end of the poly(ethylene glycol) (PEG) chain, that is, acetal-PEG-b-PAMA, was synthesized by a proprietary polymerization technique. Gold nanoparticles (GNPs) were prepared using the thus-synthesized acetal-PEG-b-PAMA block copolymer. The PEG-b-PAMA not only acted as a reducing agent of aurate ions but also attached to the nanoparticle surface. The GNPs obtained had controlled sizes and narrow size distributions. They also showed high dispersion stability owing to the presence of PEG tethering chains on the surface. The same strategy should also be applicable to the fabrication of semiconductor quantum dots and inorganic porous nanoparticles. The preparation of nanoparticles in situ, i.e. in the presence of acetal-PEG-b-PAMA, gave the most densely packed polymer layer on the nanoparticle surface; this was not observed when coating preformed nanoparticles. PEG/polyamine block copolymer was more functional on the metal surface than PEG/polyamine graft copolymer, as confirmed by angle-dependent x-ray photoelectron spectroscopy. We successfully solubilized the C60 fullerene into aqueous media using acetal-PEG-b-PAMA. A C60/acetal-PEG-b-PAMA complex with a size below 5 nm was obtained by dialysis. The preparation and characterization of these materials are described in this review.  相似文献   

12.
We report an original iterative method for fabricating three-dimensional mesoporous structures by independently stacking multiple self-assembled block copolymer films supported by Si membranes. A first layer is formed on the substrate by a self-assembled PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)) film. A porous, permeable Si membrane deposited on top of the first block copolymer film provides mechanical support, preventing pattern collapse during the wet developing used to selectively remove the PMMA component of the PS-b-PMMA film. A second, dense Si membrane is deposited to seal the porous membrane, resulting in an impermeable coating suspended atop the self-assembled mesoporous polystyrene structures. The process can then be iterated using the sealed membrane as the new substrate to support a subsequent self-assembled block copolymer film. This multilayer approach provides a flexible three-dimensional fabrication technique where, in each layer, pattern morphology, domain orientation and degree of ordering can be designed independently. Furthermore, the process is compatible with electron-beam directed assembly, used to achieve regular patterns with feature density multiplication at any level in the stack.  相似文献   

13.
Kao J  Bai P  Chuang VP  Jiang Z  Ercius P  Xu T 《Nano letters》2012,12(5):2610-2618
We demonstrated a versatile approach to obtain layered nanoparticle sheets with in-plane hexagonal order and 3-D ordered arrays of single nanoparticle chains in thin films upon blending nanoparticles with block copolymer (BCP)-based supramolecules. Basic understanding on the thermodynamic and kinetic aspects of the assembly process paved a path to manipulate these assemblies to meet demands in nanoparticle-based device fabrication and understand structure-property correlations.  相似文献   

14.
In this paper we demonstrate an approach to fabricate silica nanowires by combining "top-down" e-beam lithography and "bottom-up" layer-by-layer (LbL) nano self-assembly techniques. The simple and low-cost LbL self-assembly technique is used to grow silica nanoparticle thin film, while the e-beam lithography based lift-off technique is implemented to pattern the self-assembled thin film to nanometer scale. The silica nanowires fabricated by this method have an average width of 90 nm, while the minimum width obtained is 63 nm. Our experimental results indicate a new approach to fabricate nanowires that can be used in nanoelectronic devices and circuits.  相似文献   

15.
D Pan  Q Fu  J Lu 《Nanotechnology》2012,23(30):305302
Block copolymer micelle lithography is known for producing ordered and uniform nanostructures. In this report, we have combined different types of block copolymer to produce two interpenetrating lattices of micelle nanoreactors, further extending the capacity of block copolymer micelle lithography. Using polystyrene-block-poly(acrylic acid) and polystyrene-block-poly(4-vinylpyridine), we have generated hexagonally packed hybrid micelles. Metal species can preferentially sequester into poly(acrylic acid) and poly(4-vinylpyridine) cores respectively by immersion of the micelle coated substrates into the metal precursor solution. As a result, metal containing nanoparticle hybrids, such as smaller zinc oxide nanoparticles surrounding larger gold nanoparticles, can be generated.  相似文献   

16.
We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe(3)O(4)) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures.  相似文献   

17.
Jeong JW  Park WI  Kim MJ  Ross CA  Jung YS 《Nano letters》2011,11(10):4095-4101
An extraordinarily large degree of tunability in geometry and dimension is demonstrated in films of a self-assembled block copolymer. A poly(2-vinylpyridine-b-dimethylsiloxane) block copolymer with highly incompatible blocks was spun-cast on patterned substrates and treated with various solvent vapors. The degree of selective swelling in the poly(2-vinylpyridine) matrix block could be controlled over an extensive range, leading to the formation of various microdomain morphologies such as spheres, cylinders, hexagonally perforated lamellae, and lamellae from the same block copolymer. The systematic control of swelling ratio and the choice of solvent vapors offer the unusual ability to control the width of very well-ordered linear features within a range between 6 and 31 nm. This methodology is particularly useful for nanolithography based on directed self-assembly in that a single block copolymer film can form microdomains with a broad range of geometries and sizes without the need to change molecular weight or volume fraction.  相似文献   

18.
We study the substrate effect on the deformation and hardness behaviour of chromium thin films using nanoindentation technique. Two different substrates namely Si (100) and AISI-304 SS are used in order to obtain a soft film on a hard substrate and a hard film on a soft substrate combination. Typical hardness variations for the two combinations are obtained. It is also observed that Cr thin films deposited on two different substrates deform distinctly. Radial cracks are found to develop in the case of Cr film on Si whereas circumferential cracks are produced in the case of Cr film on SS substrate. Using 2-D finite element analysis, it is found that the substrate not only affects the development of plastic zone but also the stress distribution in the films which results in observed distinct hardness and deformation behaviour.  相似文献   

19.
Heterogeneous materials in which the characteristic length scale of the filler material is in the nanometer range—i.e., nanocomposites—is currently one of the fastest growing areas of materials research. Polymer nanocomposites have expanded beyond the original scope of polymer–nanocrystal dispersions for refractive‐index tuning or clay‐filled homopolymers primarily pursued for mechanical reinforcement, to include a wide range of applications. This article highlights recent research efforts in the field of structure formation in block copolymer‐based nanocomposite materials, and points out opportunities for novel materials based on inclusion of different types of nanoparticles. The use of block copolymers instead of homopolymers as the matrix is shown to afford opportunities for controlling the spatial and orientational distribution of the nanoelements. This, in turn, allows much more sophisticated tailoring of the overall properties of the composite material.  相似文献   

20.
Roll-to-roll vacuum coating on moving plastic substrates and the subsequent comminuting of the film into a flake or platelet with microscale lateral and thickness dimensions is an industrially mature technology utilized to produce clean, consistent material with high throughput. In this study, we describe the novel preparation of nanoplatelets by top-down vacuum evaporation of yttria-stabilized zirconium dioxides (YSZ) on a nanoembossed, moveable substrate for the purposes of making nanoplatelets. Microscopy and particle size analysis of the resulting YSZ nanoplatelets revealed that use of the nanoembossed substrate results in significant narrowing of the particle size distribution. However, while the YSZ coatings were conformal and successfully replicated the nanopattern of the underlying substrate, the stress in the film was inadequate to fracture the film into platelets that replicated the nanometer dimensions of the underlying pattern. It was determined that this is due to the inherent fracture toughness of the nanoplatelets and the augmented adhesion forces along the increased length scale of nanoparticle contacts. The nanoplatelets were further reduced in average size and size distribution by post-processing techniques of sonication, ball milling, and centrifugation. The nanoplatelet’s stoichiometry and crystallinity were modified by manipulating the source material, deposition parameters, and post-processing steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号