首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WindSat, the first satellite polarimetric microwave radiometer, and the NPOESS Conical Microwave Imager/Sounder both have as a key objective the retrieval of the ocean surface wind vector from radiometric brightness temperatures. Available observations and models to date show that the wind direction signal is only 1-3 K peak-to-peak at 19 and 37 GHz, much smaller than the wind speed signal. In order to obtain sufficient accuracy for reliable wind direction retrieval, uncertainties in geophysical modeling of the sea surface emission on the order of 0.2 K need to be removed. The surface roughness spectrum has been addressed by many studies, but the azimuthal signature of the microwave emission from breaking waves and foam has not been adequately addressed. Recently, a number of experiments have been conducted to quantify the increase in sea surface microwave emission due to foam. Measurements from the Floating Instrumentation Platform indicated that the increase in ocean surface emission due to breaking waves may depend on the incidence and azimuth angles of observation. The need to quantify this dependence motivated systematic measurement of the microwave emission from reproducible breaking waves as a function of incidence and azimuth angles. A number of empirical parameterizations of whitecap coverage with wind speed were used to estimate the increase in brightness temperatures measured by a satellite microwave radiometer due to wave breaking in the field of view. These results provide the first empirically based parameterization with wind speed of the effect of breaking waves and foam on satellite brightness temperatures at 10.8, 19, and 37 GHz.  相似文献   

2.
Multifrequency Microwave Radiometer Measurements of Soil Moisture   总被引:3,自引:0,他引:3  
Ground-based microwave radiometer experiments were performed to investigate the effects of moisture, temperature, and roughness on microwave emission from bare soils. Measurements were made at frequencies of 0.6-0.9, 1.4, and 10.7 GHz using van-mounted radiometers to observe prepared soil sites in Kern County, CA. The sites were instrumented for monitoring soil characteristics and surface meteorological conditions. Brightness temperature variations of approximately 15 K at 1.4 GHz and 25 K at 10.7 GHz were observed as a result of diurnal changes in the soil temperature. Increasing the soil moisture content from 2 to 15 percent by volume resulted in brightness temperature decreases of approximately 70 K at 0.775 and 1.4 GHz, and 40 K at 10.7 GHz, depending, to a lesser extent, on polarization and viewing angle. The results show the significance of soil temperature in deriving soil moisture from microwave radiometer measurements. Comparisons of the microwave measurements with theoretical predictions using a smooth surface model show reasonable agreement and support previous results of this nature obtained with other soil types. Approximately equal sensitivity to soil moisture was observed at 0.775 and 1.4 GHz, although the sampling depth is greater at the lower frequency.  相似文献   

3.
Soil moisture is an important parameter for hydrological and climatic investigations. Future satellite missions with L-band passive microwave radiometers will significantly increase the capability of monitoring Earth's soil moisture globally. Understanding the effects of surface roughness on microwave emission and developing quantitative bare-surface soil moisture retrieval algorithms is one of the essential components in many applications of geophysical properties in the complex Earth terrain by microwave remote sensing. We explore the use of the integral equation model (IEM) for modeling microwave emission. This model was validated using a three-dimensional Monte Carlo model. The results indicate that the IEM model can be used to simulate the surface emission quite well for a wide range of surface roughness conditions with high confidence. Several important characteristics of the effects of surface roughness on radiometer emission signals at L-band 1.4 GHz that have not been adequately addressed in the current semiempirical surface effective reflectivity models are demonstrated by using IEM-simulated data. Using an IEM-simulated database for a wide range of surface soil moisture and roughness properties, we developed a parameterized surface effective reflectivity model with three typically used correlation functions and an inversion model that puts different weights on the polarization measurements to minimize surface roughness effects and to estimate the surface dielectric properties directly from dual-polarization measurements. The inversion technique was validated with four years (1979-1982) of ground microwave radiometer experiment data over several bare-surface test sites at Beltsville, Maryland. The accuracies in random-mean-square error are within or about 3% for incidence angles from 20/spl deg/ to 50/spl deg/.  相似文献   

4.
For several areas of the North Atlantic region characterized by strongly varying parameters of the ocean and the atmosphere and having different microwave emissivity characteristics, sampled data measured in the water vapor absorption region at a frequency of 22 GHz (a wavelength of 1.35 cm) in April and May 2002 by the MTVZA radiometer installed onboard the Meteor-3M no. 1 Russian artificial Earth satellite are compared with data measured simultaneously by the SSM/I radiometer installed onboard the F-13 (DMSP series) US artificial satellite.  相似文献   

5.
Measurements with Shuttle Imaging Radar B (SIR-B) at 1.28 GHz and an airborne multiple-beam push-broom radiometer at 1.4 GHz were made over a number of agricultural fields near Fresno, California during October 7-10, 1984. These measurements provided a unique data set for studies of microwave emission and backscatter from surfaces of various characteristics. The effects of surface roughness and vegetation (alfalfa and lettuce) were analyzed with respect to the responses of microwave emission and backscatter to soil-moisture variations. A theoretical model (Kirchhoff approximation) was employed to assess these effects. It was found that for microwave emission, the effect of surface roughness is less significant compared to that of vegetation. On the other hand, the surface roughness was shown to play a dominant role compared to the vegetation cover in the microwave backscatterve backscatter. The two roughness parameters in the theoretical model calculations were the surface correlation length and the standard deviation of surface height. These parameters were found to be affected strongly by the soil-texture effect in the emissivity calculations. A disagreement was found between the calculated and the observed scattering coefficients if the measured surface correlation length and standard deviation of surface height were input to the model. Either one of these two parameters had to be modified appreciably to bring a comparability between the measured and calculated scattering coefficients.  相似文献   

6.
介绍了被动微波遥感的两个新的技术-综合孔径微波辐射计和全极化参量微波辐射计.综合孔径微波辐射计采用干涉测量技术,用小天线的干涉基线组合合成大孔径天线的思想,提高被动微波遥感的空间分辨率,并实现视场范围的数字成像;全极化参量微波辐射计是一种新的微波遥感参数的探测技术,它测量目标微波辐射的全部4个Stokes极化参量,对于表面粗糙度各向异性特性的探测和目标的分类与识别具有很好的前景.  相似文献   

7.
Microwave radiometric observations were made with specially designed microwave radiometers at 6.7 and 18.6 GHz, and the results were compared with those of other investigators, over the frequency range of 1-40 GHz. Dependences of sea surface emission and reflection on wind speed, frequency, incidence angle, and polarization type are discussed in detail, following discussions of the reflective processes of sky radiation and error estimation in the retrieval of mainlobe-averaged brightness temperature. The wind speed sensitivity of brightness temperature, emissivity, and reflectivity is formulated with respect to frequency and incidence angle in each polarization. The brightness temperature, emissivity and reflectivity at arbitrary wind speed are derived employing this formulation. Based on the results obtained it is suggested that the 10-19-GHz band may be optimal for satellite microwave radiometer observations of sea-surface wind  相似文献   

8.
An experimental investigation has been made of the possibility of using a microwave radiometer to find humans covered by snow. When a radiometer operating at 1.4 GHz was moved along a track it registered a highly fluctuating radiation temperature of the snow covered ground. The increase in temperature when the radiometer passed over a human was so small that detection in general was impossible.  相似文献   

9.
The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), and the Humidity Sounder for Brazil (HSB) form an integrated cross-track scanning temperature and humidity sounding system on the Aqua satellite of the Earth Observing System (EOS). AIRS is an infrared spectrometer/radiometer that covers the 3.7-15.4-/spl mu/m spectral range with 2378 spectral channels. AMSU is a 15-channel microwave radiometer operating between 23 and 89 GHz. HSB is a four-channel microwave radiometer that makes measurements between 150 and 190 GHz. In addition to supporting the National Aeronautics and Space Administration's interest in process study and climate research, AIRS is the first hyperspectral infrared radiometer designed to support the operational requirements for medium-range weather forecasting of the National Ocean and Atmospheric Administration's National Centers for Environmental Prediction (NCEP) and other numerical weather forecasting centers. AIRS, together with the AMSU and HSB microwave radiometers, will achieve global retrieval accuracy of better than 1 K in the lower troposphere under clear and partly cloudy conditions. This paper presents an overview of the science objectives, AIRS/AMSU/HSB data products, retrieval algorithms, and the ground-data processing concepts. The EOS Aqua was launched on May 4, 2002 from Vandenberg AFB, CA, into a 705-km-high, sun-synchronous orbit. Based on the excellent radiometric and spectral performance demonstrated by AIRS during prelaunch testing, which has by now been verified during on-orbit testing, we expect the assimilation of AIRS data into the numerical weather forecast to result in significant forecast range and reliability improvements.  相似文献   

10.
This paper addresses the long-standing problem of separating the tropospheric amplitude scintillations from the dominant trend of atmospheric attenuation in a satellite downlink. Following extensive theoretical and experimental work, it is shown how the use of a radiometer coaxial with the communications beacon receiver constitutes an excellent tool for an optimum separation regardless of the meteorological conditions along the propagation path and avoids the use of the long-traditional high-pass filter approach. The experimental and theoretical work has revealed that the angular resolution of the radiometer together with the dynamics of rain attenuation and tropospheric scintillations determine the success of the extraction. This is because fast fadings require large radiometer antennas in order to resolve the sky temperature fluctuations. The dynamic behavior of rain attenuation has been reanalyzed and adapted for this study with special focus on the Maseng-Bakken (MB) model and the impact of the slant path on attenuation dynamics. The importance of the antenna pattern in the time response of the radiometer is studied in detail and permits to derive the maximum Fourier component observable for a given antenna size. The theoretical work has been verified by means of extensive experimental results obtained using a dual radiometer system and a beacon receiver tracking the ITALSAT 39.5 GHz F40 beacon. Finally, because of its importance and direct relevance to future communication systems benefiting from fade countermeasure strategies, the minimum size of the radiometer antenna for a successful extraction of amplitude scintillations is determined as a function of the elevation angle and carrier frequency  相似文献   

11.
A field experiment with an L-band radiometer at 1.4 GHz was performed from May-July 2004 at an experimental site near Zurich, Switzerland. Before the experiment started, clover grass was seeded. Thermal infrared, in situ temperature, and time-domain reflectometer (TDR) measurements were taken simultaneously with hourly radiometer measurements. This setup allowed for investigation of the microwave optical depths and mode opacities (parallel and perpendicular to the soil surface) of the clover grass canopy. Optical depths and opacities were determined by in situ analysis and remotely sensed measurements using a nonscattering radiative transfer model. Due to the canopy structure, optical depth and opacity depend on the polarization and radiometer direction, respectively. A linear relation between vegetation water-mass equivalent and polarization-averaged optical depth was observed. Furthermore, measured and modeled radiative transfer properties of the canopy were compared. The model is based on an effective-medium approach considering the vegetation components as ellipsoidal inclusions. The effect of the canopy structure on the opacities was simulated by assuming an anisotropic orientation of the vegetation components. The observed effect of modified canopy structure due to a hail event was successfully reproduced by the model. It is demonstrated that anisotropic vegetation models should be used to represent the emission properties of vegetation. The sensitivity of radiometer measurements to soil water content was investigated in terms of the fractional contribution of radiation emitted from the soil to total radiation. The fraction of soil-emitted radiation was reduced to approximately 0.3 at the most developed vegetation state. The results presented contribute toward a better understanding of the interaction between L-band radiation and vegetation canopies. Such knowledge is important for evaluating data generated from future satellite measurements.  相似文献   

12.
A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz H and V polarized brightness temperature observations from the scanning multichannel microwave radiometer (SMMR) over several test sites in Illinois. Results using only nighttime data are presented at this time due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a nonlinear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness, and that vegetation optical depth for H-polarization is the same as for V-polarization. Surface temperature is derived by a procedure using high frequency V-polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and may be applied to other wavelengths. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors  相似文献   

13.
An airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) was developed recently for calibration/validation of the new-generation DMSP F-series microwave radiometer, the Special Sensor Microwave/Imager/Sounder. The CoSMIR is a total-power radiometer that measures radiation at nine channels over the frequency range of 50-183 GHz. The instrument employs a two-axis gimbaled mechanism to generate the conical scan with periodic calibration. Its scan geometry is software programmable and can be designed to serve the scientific requirements of an experiment. A series of CoSMIR flights was conducted over the coastal regions of California in March and December of 2004, in which the instrument was programmed to acquire both conical and across-track scan data sets simultaneously. Two of these flights on March 25 and December 2 contained segments over the snow-covered Sierra Mountain Range and were selected to demonstrate the novel features of this new instrument  相似文献   

14.
A new printed microwave antenna is presented. The antenna is a hybrid between a wire antenna array and a microstrip patch antenna. Although the size, cost, and efficiency are comparable to the microstrip patch, the voltage standing wave ratio 2:1 bandwidth of the antenna presented here is above 20%. The radiation pattern of the antenna does not change appreciably within the bandwidth, and the theoretical efficiency for optimal antennas remains above approximately 80% within the bandwidth. Measurements on several antennas around 2 and 4 GHz are presented, as well as theoretical results obtained using a full-wave analysis  相似文献   

15.
Microwave radiometry for cement kiln temperature measurements.   总被引:1,自引:0,他引:1  
The maximum temperature inside a cement kiln is a critical operating parameter, but is often difficult or impossible to measure. We present here the first data that show a correlation between cement kiln temperature measured using a microwave radiometer and product chemistry over an eight-hour period. The microwave radiometer senses radiation in the 12-13 GHz range and has been described previously [Stephan and Pearce (2002), JMPEE 37: 112-124].  相似文献   

16.
ESTAR represents a new technology being developed for passive microwave remote sensing of the environment from space. The instrument employs an interferometric technique called aperture synthesis in which the coherent product from pairs of antennas is measured as a function of pair spacing. Substantial reductions in the antenna aperture needed for a given spatial resolution can be achieved with this technique. As a result, aperture synthesis could lead to practical passive microwave remote sensing instruments in space to measure parameters such as soil moisture and ocean salinity which require observations at long wavelengths and, therefore, large antennas. ESTAR is an L-band, aircraft built as part of research to develop this technique ESTAR is a hybrid real-and-synthetic aperture radiometer which employs stick antennas to achieve resolution along track and uses aperture synthesis to achieve resolution across track. Experiments to validate the instrument's ability to measure soil moisture have recently been conducted at the USDA watersheds at Walnut Gulch in Arizona and the Little Washita River in Oklahoma. The results of both experiments indicate that a valid image reconstruction and calibration have been obtained for this remote sensing technique  相似文献   

17.
A simplified method for the measurement of the atmospheric water vapor is presented. A multifrequency microwave radiometer having two different beamwidth antennas is used to measure solar extinction in terms of the difference temperature of the antennas and the relative intensity at each pair of different frequency points. The atmospheric emission component and the effect of solar fluctuation are removed automatically. Cloud absorption can be estimated by simultaneous measurement at two different frequency pairs and compensated for by the water vapor absorption. Using the specific nature of the composite weighting function defined in the opacity integral, the radiometric data can be related to the integrated water vapor and the water vapor profile  相似文献   

18.
Passive microwave Earth observing systems provide coarse resolution data. Heterogeneity in physical characteristics will typically be present within footprints, especially over land. How this affects the development and validation of methods of retrieving soil moisture has not been verified. In this study, aircraft-based 1.4 GHz microwave radiometer data were collected sit several altitudes over test sites where soil moisture was measured concurrently. The use of multiple flightlines at lower altitudes allowed the direct comparison of different spatial resolutions using independent samples over the same ground location. Results showed that the brightness temperature data from 1.4 GHz sensor in this study region provides the same mean values for an area regardless of the spatial resolution of the original data. The relationship between brightness temperature and soil moisture was similar at different resolutions. These results suggest that soil moisture retrieval methods developed using high resolution data can be extrapolated to satellite scales  相似文献   

19.
This paper focusses on microwave radiometer measurements of the emission from saline ice as a function of ice thickness. The instrument used is a C-band stepped-frequency microwave radiometer (SFMR) that can be tuned to operate at any center frequency from 4 to 8 GHz at a bandwidth of 100 MHz. The measurements were undertaken at a facility constructed by the U. S. Army Cold Regions Research and Engineering Laboratory, which was specifically designed to satisfy remote-sensing requirements. In addition to presenting the data, a simple theory is developed to explain the experimental results in terms of the relevant electromagnetic parameters; namely, the complex dielectric constant and thickness of the ice.  相似文献   

20.
The instrument concept of a future spaceborne millimeter/sub-millimeter radiometer is proposed in this paper for the remote sensing of ice clouds from satellite. The proposed radiometer is expected to operate at a series of frequencies within the millimeter and sub-millimeter wave range from 150 to about 900 GHz. Five frequencies are selected in the atmospheric windows, i.e., 150, 220, 463, 683, 874 GHz, and at each frequency there are two orthogonally polarized channels. Three water vapor channels located close to 183.31 GHz are also included in this instrument, since they can provide water vapor information, which is needed for ice cloud parameter retrieval. To simplify system design and test, a modular design philosophy is followed in the receiver frontend design and two antennas are used separately for the millimeter and sub-millimeter channels. Overall, the instrument requirements can be met with today's technology, except for the channels at the highest frequencies, where the radiometric sensitivity can be larger than the required 1.0 K for the 10 km spatial resolution (2.5 ms integration time). However, this situation can be improved by averaging neighboring pixels in data processing if certain compromise in the spatial resolution can be made at these frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号