首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superactivated carbon and carbon nanotubes are both considered potential hydrogen carriers. Adsorption isotherms of H2 on activated carbon AX-21 and multi-wall carbon nanotubes were collected with a volumetric method for the temperature range of 77, 233-298 K and pressures up to 7 or 10 MPa. Based on the experimental data for 233-298 K, the limiting heats of adsorption of 7.6 and 1.8 kJ/mol were obtained for activated carbon and carbon nanotubes, respectively. The absolute adsorption was determined with a recently presented method, and the adsorption behavior of H2 on carbon nanotubes was thus reasonably explained. A comparison was given for the storage capacities of compression alone and of filling powder or pellets of the two materials. It was concluded that adsorption of H2 on carbon nanotubes is too weak to enhance storage, but activated carbon enhances storage capacity considerably. The weight percentage of hydrogen stored in carbon powder reaches 10.8% at 77 K and 6 MPa, including the quantity compressed in the void space, and 4.1 kg H2 was stored in a 100-liter container filled with carbon pellets for the same condition.  相似文献   

2.
Hydrogen adsorption measurements have been carried out at different temperatures (298 K and 77 K) and high pressure on a series of chemically activated carbons with a wide range of porosities and also on other types of carbon materials, such as activated carbon fibers, carbon nanotubes and carbon nanofibers. This paper provides a useful interpretation of hydrogen adsorption data according to the porosity of the materials and to the adsorption conditions, using the fundamentals of adsorption. At 298 K, the hydrogen adsorption capacity depends on both the micropore volume and the micropore size distribution. Values of hydrogen adsorption capacities at 298 K of 1.2 wt.% and 2.7 wt.% have been obtained at 20 MPa and 50 MPa, respectively, for a chemically activated carbon. At 77 K, hydrogen adsorption depends on the surface area and the total micropore volume of the activated carbon. Hydrogen adsorption capacity of 5.6 wt.% at 4 MPa and 77 K have been reached by a chemically activated carbon. The total hydrogen storage on the best activated carbon at 298 K is 16.7 g H2/l and 37.2 g H2/l at 20 MPa and 50 MPa, respectively (which correspond to 3.2 wt.% and 6.8 wt.%, excluding the tank weight) and 38.8 g H2/l at 77 K and 4 MPa (8 wt.% excluding the tank weight).  相似文献   

3.
We report on the gas storage behaviour and electrochemical charge storage properties of high surface area activated nanoporous carbon obtained from rice husk through low temperature chemical activation approach. Rice husk derived porous carbon (RHDPC) exhibits varying porous characteristics upon activation at different temperatures and we observed high gas uptake and efficient energy storage properties for nanoporous carbon materials activated even at a moderate activation temperature of 500 °C. Various experimental techniques including Fourier transform-infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy and pore size analyser are employed to characterise the samples. Detailed studies on gas adsorption behaviour of CO2, H2 and CH4 on RHDPCs have been performed at different temperatures using a volumetric gas analyser. High adsorption capacities of ~9.4 mmol g?1 (298 K, 20 bar), 1.8 wt% (77 K, 10 bar) and ~5 mmol g?1 (298 K, 40 bar) were obtained respectively for CO2, H2 and CH4, superior to many other carbon based physical adsorbents reported so far. In addition, these nanoporous carbon materials exhibit good electrochemical performance as supercapacitor electrodes and a maximum specific capacitance of 112 F g?1 has been obtained using aqueous 1 M Na2SO4 as electrolyte. Our studies thus demonstrate that nanoporous carbon with high porosity and surface area, obtained through an efficient approach, can act as effective materials for gas storage and electrochemical energy storage applications.  相似文献   

4.
Natural gas storage in activated carbon pellets without a binder   总被引:1,自引:0,他引:1  
Activated carbon pellets without a binder from cellulose microcrystals as a raw material were investigated. After compression of the raw materials, the thus obtained raw material pellets were slowly carbonized to 1073 K under nitrogen. To activate them, the carbon pellets were heated to 1173 K under carbon dioxide. The activated carbon pellet shape, after heat treatment, was columnar by using the previous employed compression of the raw material. The total surface area, pore volume, and average pore diameter for all the samples were evaluated from the analysis of N2 adsorption isotherm data. The total surface area and the pore volume were decreased with an increase in compression pressure under the same heat treatment conditions. On the contrary, the bulk densities of the activated carbon pellets were increased. However, these properties can be easily controlled by changing the sintering temperature and time. The bulk density of sample pellet was 0.56 g/cm3. It is 2.3 times higher than activated carbon powder, which was made without the compression process. The total methane storage capacity at 298 K reached 164 cm3 in 1 cm3 volume of activated carbon pellets at 3.5 MPa.  相似文献   

5.
Graphene-like nanosheets have been synthesized by the reduction of a colloidal suspension of exfoliated graphite oxide. The morphology and structure of the graphene powder sample was studied using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The graphene sheets are found to be in a highly agglomerated state, with many wrinkles. The sample has a BET surface area of 640 m2/g as measured by nitrogen adsorption at 77 K. Hydrogen adsorption-desorption isotherms were measured in the temperature range 77-298 K and at pressures of up to 10 bar. This gives hydrogen adsorption capacities of about 1.2 wt.% and 0.1 wt.% at 77 K and 298 K, respectively. The isosteric heat of adsorption is in the range of 5.9-4 kJ/mol, indicating a favourable interaction between hydrogen and surface of the graphene sheets. The estimated room temperature H2 uptake capacity of 0.72 wt.% at 100 bar and the isosteric heat of adsorption of our sample are comparable to those of high surface area activated carbons, however significantly better than the recently reported values for graphene and a range of other carbon and nanoporous materials; single and multi walled carbon nanotubes, nanofibers, graphites and zeolites.  相似文献   

6.
《分离科学与技术》2012,47(8):1227-1234
The synthesis of horn-shaped carbon nanotubes using carbon tetrachloride as carbon source was carried out by solvothermal method at 200°C for 2 h. The scanning and transmission electron microscopic characterization of the obtained product showed the formation of horn-shaped carbon nanotubes with irregular wall structure having inner diameter of ~105 nm and length of ~1 µm. The equilibrium gas adsorption properties of horn-shaped carbon nanotubes derived from carbon tetrachloride were successfully investigated for CO2, CH4, and N2 at 288, 303, and 318 K. Horn-shaped carbon nanotubes possess better CO2 adsorption capacity (2.53 mmol/g) with high capacity selectivity (14.7) and equilibrium selectivity (59.1) over N2 at 288 K. The detailed adsorption study with estimation of physical parameters such as Henry's constant and heat of adsorption identifies the horn-shaped carbon nanotubes as a potential adsorbent material in the field of CO2 storage and separation.  相似文献   

7.
Hydrogen adsorption data on as-grown and heat-treated single walled carbon nanotubes (SWNTs) obtained by a volumetric procedure using a Quantachrome Autosorb-1 equipment are presented. The amounts of hydrogen adsorbed at atmospheric pressure reach approximately 0.01 wt.% at 298 K and 1 wt.% at 77 K. The isosteric heat of adsorption has been calculated for both samples from H2 equilibrium adsorption data at three temperatures, having initial values of 7.42 and 7.75 kJ mol−1. Studies in porous structure by N2 adsorption and density measurements in helium pycnometer are reported.  相似文献   

8.
《分离科学与技术》2012,47(5):1045-1073
Abstract

The design of a layered pressure swing adsorption unit to treat a specified off-gas stream is based on the properties of the adsorbent materials. In this work we provide adsorption equilibrium and kinetics of the pure gases in a SMR off-gas: H2O, CO2, CH4, CO, N2, and H2 on two different adsorbents: activated carbon and zeolite. Data were measured gravimetrically at 303–343 K and 0–7 bar. Water adsorption was only measured in the activated carbon at 303 K and kinetics was evaluated by measuring a breakthrough curve with high relative humidity.  相似文献   

9.
王召  龚俊波 《化工学报》2013,64(2):696-701
引言氢能是可再生的理想洁净能源,人类出于对环境的保护和化石燃料趋于短缺的考虑,太阳能和氢能的利用已是本世纪能源领域发展的必然趋势。特别是在燃料电池迅速发展并获得突破的今天,更安全、灵活和有效的氢能储藏技术的研究受到全球的广泛关注[1]。在吸附储氢材料中,碳质材料由于其质量轻、比表面积高和合适的结构引起了广泛的重视[2-10]。Yang等[11-12]发现在碳上掺杂过渡金属(Rh、Pt、  相似文献   

10.
Amorphous carbon nanofibers (CNFs), produced by the polymer blend technique, are activated by CO2 (ACNFs). Monoliths are synthesized from the precursor and from some ACNFs. Morphology and textural properties of these materials are studied. When compared with other activating agents (steam and alkaline hydroxides), CO2 activation renders suitable yields and, contrarily to most other precursors, turns out to be advantageous for developing and controlling their narrow microporosity (<0.7 nm), VDR(CO2). The obtained ACNFs have a high compressibility and, consequently, a high packing density under mechanical pressure which can also be maintained upon monolith synthesis. H2 adsorption is measured at two different conditions (77 K/0.11 MPa, and 298 K/20 MPa) and compared with other activated carbons. Under both conditions, H2 uptake depends on the narrow microporosity of the prepared ACNFs. Interestingly, at room temperature these ACNFs perform better than other activated carbons, despite their lower porosity developments. At 298 K they reach a H2 adsorption capacity as high as 1.3 wt.%, and a remarkable value of 1 wt.% in its mechanically resistant monolith form.  相似文献   

11.
Dong Young Kim 《Carbon》2008,46(4):611-617
Single wall carbon nanotubes (SWCNTs) were treated with a HNO3/H2SO4 mixed solution to increase the number of narrow micropores. The mixed acid treatment increased the micropore volume from 0.13 to 0.35 mL g−1 as measured by N2 adsorption at 77 K. The micropore volume evaluated with CO2 adsorption at 273 K increased from 0.06 to 0.27 mL g−1. This remarkable micropore volume increase was ascribed to the formation of a highly packed and ordered SWCNT assembly with the acid treatment, which was confirmed by field emission scanning electron microscopy. The adsorption amount of supercritical H2 at 77 K under 5 MPa pressure increased twofold as a result of the acid treatment, while the supercritical CH4 adsorption amount at 303 K and 5 MPa pressure increased by 40%. These remarkable increases were caused by increased amount of narrow micropores as a result of the acid treatment.  相似文献   

12.
Hydrogen adsorption in different carbon nanostructures   总被引:1,自引:0,他引:1  
Hydrogen adsorption in different carbonaceous materials with optimized structure was investigated at room temperature and 77 K. Activated carbon, amorphous carbon nanotubes, SWCNTs and porous carbon samples all show the same adsorption properties. The fast kinetics and complete reversibility of the process indicate that the interaction between hydrogen molecules and the carbon nanostructure is due to physisorption. At 77 K the adsorption isotherm of all samples can be explained with the Langmuir model, while at room temperature the storage capacity is a linear function of the pressure. The surface area and pore size of the carbon materials were characterized by N2 adsorption at 77 K and correlated to their hydrogen storage capacity. A linear relation between hydrogen uptake and specific surface area (SSA) is obtained for all samples independent of the nature of the carbon material. The best material with a SSA of 2560 m2/g shows a storage capacity of 4.5 wt% at 77 K.  相似文献   

13.
《分离科学与技术》2012,47(3):681-711
Abstract

A timber industry waste was transformed to activated carbon by a one-step chemical activation process using H3PO4 (H). The used activated carbon (SDH) was characterized by N2 adsorption, FTIR, density, pH, point of zero charge pHpzc, moisture and ash content. Methylene blue (MB) and the iodine number were calculated by adsorption from the solution. The applicability of the different activated carbon produced was carried out to treatment of aqueous waste contaminated with iodine-labeled prolactin (I-PRL) Treatment processes were performed under the varying conditions; contact time, temperature, carbon type, carbon dosage, and different particle size of the activated carbon (SDH). The results indicated that 5 hours are sufficient to reach a plateau, and the amount of I-PRL adsorbed on SDH activated carbons increase with the solution temperature with thermodynamic parameter of ΔG° = ?7.962 (kJ/mol), ΔH° = 28.869 (kJ/mol) and ΔS° = 109.94 (J/mol K). The optimum adsorption results were reached using carbon dose of 0.1 gm with particle size of <0.25 mm, and a batch factor (V/M) of 7.14 mlg?1. First- and second-order equations, intraparticle diffusion equation, and the Elovich equation have been used to test experimental data. The experimental data was found to fit the second-order model and a chemisorptions mechanism. 0.7 M NaOH can be used for regeneration of spent SDH activated carbon with the efficiency of 99.6% and the regenerated carbon can be reused for five cycles effectively.  相似文献   

14.
Activation of mesoporous carbon CMK-3 with CO2 for hydrogen storage was studied. Huge structure and texture changes emerged for the activated CMK-3 based on the characterization by using XRD, TEM and nitrogen adsorption at 77 K. The ordered mesoporous structure of CMK-3 gradually became disorder and its specific surface area and volume of pores especially micropores were enhanced remarkably. Hydrogen sorption measurement showed that the activation led to an obvious increase of the H2 sorption capacity of CMK-3. The maximum H2 uptake of 2.27 wt% at 77 K and 1 bar was obtained for the sample activated at 1223 K for 8 h. The small pores with the diameter smaller than 1 nm contributed greatly to the H2 uptake, and were confirmed more effective than other pores for hydrogen storage.  相似文献   

15.
B. Kuchta  L. Firlej  P. Pfeifer 《Carbon》2010,48(1):223-231
Theoretical limits of the hydrogen adsorption in carbon nanospaces are modeled using Monte Carlo simulations. A detailed analysis of storage capacity of slit pores has been performed as a function of the pore size, gas pressure (up to 100 bars) and temperature of adsorption (77 and 298 K). The H2-slit wall interaction has been modeled assuming energies of adsorption ranging from 4.5 kJ/mol (pure graphene surface) to 15 kJ/mol (hypothetical chemically modified graphene). The quantum nature of H2 has been incorporated in the calculations using the Feynman-Hibbs approach. It has been shown that in a hypothetical chemically modified porous carbon, with energy of adsorption of 15 kJ/mol or higher and pore size between 0.8 and 1.1 nm, the gravimetric and volumetric storage capacity can achieve targets required for practical applications. The relation between the energy of adsorption and the effective delivery has been discussed.  相似文献   

16.
A commercial microporous–mesoporous granular activated carbon was modified by oxidation with either H2O2 in the presence or absence of ultrasonic irradiation, or NaOCl or by a thermal treatment under nitrogen flow. Raw and modified materials were characterized by N2 adsorption–desorption measurements at 77 K, Boehm titrations, pH measurements and X-ray photoelectron spectroscopy. Ibuprofen adsorption kinetic and isotherm studies were carried out at pH 3 and 7 on raw and modified materials. The thermodynamic parameters of adsorption were calculated from the isotherms obtained at 298, 313 and 328 K. The pore size distribution of carbon loaded with ibuprofen brought out that adsorption occurred preferentially into the ultramicropores. The adsorption of ibuprofen on pristine activated carbon was found endothermic, spontaneous (ΔG° = −1.1 kJ mol−1), and promoted at acidic pH through dispersive interactions. All explored oxidative treatments led mainly to the formation of carbonyl groups and in a less extent to lactonic and carboxylic groups. This then helped to enhance the adsorption uptake while decreasing adsorption Gibbs energy (notably −7.3 kJ mol−1 after sonication in H2O2). The decrease of the adsorption capacity after bleaching was attributed to the presence of phenolic groups.  相似文献   

17.
Yuanzhen Chen 《Carbon》2010,48(3):714-720
In recent years, large fluctuations have been reported for measurements of the hydrogen storage of carbon materials using a Sieverts apparatus. To investigate this problem, helium gas adsorption was selected for comparison with the adsorption of hydrogen, and the results show that hydrogen but not helium was adsorbed onto the wall of the sample cell at ambient temperature. The adsorption capacity of the sample cell at 77 K is higher than that at ambient temperature. A series of adsorption tests was conducted with a LaNi5 alloy to prove the influence of the physisorption, and the results show that an increase in the hydrogen storage capacity was resulted in when sample loading decreases. After correction for this hydrogen physisorption, the capacity was restricted between 1.38 and 1.41 wt.%. Multi-walled carbon nanotubes (MWCNTs), activated carbon (AC), single-walled carbon nanotubes (SWCNTs), graphite nanofibers (GNFs), and graphite oxide (GO) were also measured and corrected through this method.  相似文献   

18.
Jia Guo  Ye Luo  Ru-an Chi  Xiu-ting Bao 《Carbon》2007,45(2):330-336
Adsorption of hydrogen sulphide (H2S) onto activated carbons derived from oil palm shell, an abundant solid waste from palm oil processing mills, by thermal or chemical activation method was investigated in this paper. Dynamic adsorption in a fixed bed configuration showed that the palm-shell activated carbons prepared by chemical activation (KOH or H2SO4 impregnation) performed better than the palm-shell activated carbon by thermal activation and a coconut-shell-based commercial activated carbon. Static equilibrium adsorption studies confirmed this experimental result. An intra-particle Knudsen diffusion model based on a Freundlich isotherm was developed for predicting the amount of H2S adsorbed. Desorption tests at the same temperature as adsorption (298 K) and at an elevated temperature (473 K) were carried out to confirm the occurrence of chemisorption and oxidation of H2S on the activated carbon. Surface chemistries of the palm-shell activated carbons were characterized by Fourier transform infrared spectroscopy and Boehm titration. It was found that uptaking H2S onto the palm-shell activated carbons was due to different mechanisms, e.g. physisorption, chemisorption and/or H2S oxidation, depending on the activation agent and activation method.  相似文献   

19.
Microporous activated carbon samples were prepared from coconut shells (low-cost lignocellulose waste), using chemical activation with zinc chloride followed by physical activation. Textural characterization was performed using nitrogen adsorption at 77 K. The sample that presented the best characterization results was then evaluated for methane adsorption at pressures between 0.1 MPa and 7 MPa and temperatures in the range 283–333 K. At 298 K and 40 bar, a capacity of ca. 122 mg of methane/g of carbon (80 v/v) was observed, just short of the target established in Brazil for ANG in remote sites transportation (100 v/v). These results suggest that activated carbons prepared from coconut shells, using chemical activation followed by physical activation, may be further developed as potential adsorbents for natural gas storage applications.  相似文献   

20.
BACKGROUND: There exists now a widely held view that the methane storage capacity on an activated carbon is not related to any of the routinely determined properties of the adsorbent, such as surface area or micropore volume. This has been confirmed and a correlation pursued with other physical and/or chemical properties of both commercially available carbons and those prepared in the laboratory. Textural characteristics (from nitrogen adsorption isotherms at 77 K) considered were BET‐equivalent specific surface area, DR micropore volume and Horvath–Kawazoe micropore size distribution. Chemical properties were evaluated using Fourier transform infrared (FTIR) spectroscopy, thermal programmed decomposition (TPD) and Boehm titrations. Both kinetic and equilibrium methane adsorption experiments were performed at 273 and 298 K and up to 3.5 MPa. RESULTS: Using phosphoric acid to activate peach stones together with additional thermal treatment enabled the production of activated carbons with 137 v/v methane adsorption capacity at 298 K. CONCLUSIONS: The presence of acidic surface functional groups has a detrimental influence on methane uptake, due to the chemical inertness of the adsorbate and/or to pore blockage of the adsorbent. Basic surface functional groups (pyrone), together with a desirable pore size distribution centered at ca 0.8 nm, are thought to be responsible for improved methane adsorption capacity on such activated carbons. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号