首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 939 毫秒
1.
The gas‐liquid mass transfer behavior of syngas components, H2 and CO, has been studied in a three‐phase bubble column reactor at industrial conditions. The influences of the main operating conditions, such as temperature, pressure, superficial gas velocity and solid concentration, have been studied systematically. The volumetric liquid‐side mass transfer coefficient kLa is obtained by measuring the dissolution rate of H2 and CO. The gas holdup and the bubble size distribution in the reactor are measured by an optical fiber technique, the specific gas‐liquid interfacial area aand the liquid‐side mass transfer coefficient kL are calculated based on the experimental measurements. Empirical correlations are proposed to predict kL and a values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors.  相似文献   

2.
The gas–liquid volumetric mass transfer coefficient was determined by the dynamic oxygen absorption technique using a polarographic dissolved oxygen probe and the gas–liquid interfacial area was measured using dual‐tip conductivity probes in a bubble column slurry reactor at ambient temperature and normal pressure. The solid particles used were ultrafine hollow glass microspheres with a mean diameter of 8.624 µm. The effects of various axial locations (height–diameter ratio = 1–12), superficial gas velocity (uG = 0.011–0.085 m/s) and solid concentration (εS = 0–30 wt.%) on the gas–liquid volumetric mass transfer coefficient kLaL and liquid‐side mass transfer coefficient kL were discussed in detail in the range of operating variables investigated. Empirical correlations by dimensional analysis were obtained and feed‐forward back propagation neural network models were employed to predict the gas–liquid volumetric mass transfer coefficient and liquid‐side mass transfer coefficient for an air–water–hollow glass microspheres system in a commercial‐scale bubble column slurry reactor. © 2012 Canadian Society for Chemical Engineering  相似文献   

3.
The effects of certain pertinent parameters such as gas and liquid flow rates and nozzle position on the behavior of a down‐flow jet loop reactor (DJR) have been studied. The mean residence times of gas and liquid phases and the gas holdup within the reactor have been measured. In addition, the overall volumetric mass transfer coefficient, and the influence of the gas flow rate and the position of the nozzle inside the draft tube on the latter has been determined. Correlations have been presented for the gas holdup and kLa which take into account the length of the draft tube and the nozzle immersion height. The kLa values obtained at different power per unit volume (P/V) values in the DJR used in the present study compare favorably with data presented for stirred tanks and bubble columns in the literature. The liquid residence time distribution (RTD) within the reactor has been studied by tracer analysis for various operating conditions and nozzle immersion height and the results are indicative of the high mixing intensities that can be obtained in such reactions. © 2001 Society of Chemical Industry  相似文献   

4.
The gas holdup, ?, and volumetric mass transfer coefficient, kLa, were measured in a 0.051 m diameter glass column with ethanol as the liquid phase and cobalt catalyst as the solid phase in concentrations of 1.0 and 3.8 vol.‐%. The superficial gas velocity U was varied in the range from 0 to 0.11 m/s, spanning both the homogeneous and heterogeneous flow regimes. Experimental results show that increasing catalyst concentration decreases the gas holdup to a significant extent. The volumetric mass transfer coefficient, kLa, closely follows the trend in gas holdup. Above a superficial gas velocity of 0.04 m/s the value of kLa/? was found to be practically independent of slurry concentration and the gas velocity U; the value of this parameter is found to be about 0.45 s–1. Our studies provide a simple method for the estimation of kLa in industrial‐size bubble column slurry reactors.  相似文献   

5.
本文总结了有关浆态鼓泡床反应器气液传质特性的研究成果。详细地阐述了主要影响因素如系统压力、温度、气体表观气速、液体性质,固体浓度及其物性等对传质特性的影响,并对浆态鼓泡床传质模型进行了归纳介绍,最后对反应器未来的研究方向进行了预测。  相似文献   

6.
Gas-liquid and liquid-solid mass transfer coefficients were obtained in a draft tube bubble column slurry reactor (abbreviated as DTBCSR) from the measurements of gas absorption and ion-exchange, respectively. Oxidation of sulfur dioxide on activated carbon was carried out in the same reactor. The effects of gas flowrates, diameters of draft tube and solid concentrations were investigated. These results were compared with those in a bubble column slurry reactor without draft tube (abbreviated as BCSR). Minimum gas velocities for complete suspension of solid particles in DTBCSR were lower than those in BCSR. Gas-liquid and liquid-solid mass transfer coefficients in DTBCSR were higher than those in BCSR. Both coefficients were almost independent of solid loadings. Reaction rates in DTBCSR were higher than those in BCSR and a stirred slurry reactor (abbreviated as SSR) except for lower gas flow rates and smaller particles.  相似文献   

7.
The draft tube configuration significantly affected the performance of an airlift contactor. The multiple draft tube configuration was demonstrated to give a better gas-liquid mass transfer when compared with a conventional one-draft-tube system. The airlift with a larger number of draft tubes allowed a higher level of bubble entrainment, which rendered a high downcomer gas holdup. This resulted in a higher overall gas holdup in the contactor. Liquid velocity was also enhanced by increasing the number of draft tubes. The ratio between downcomer and riser cross sectional areas, A d /A r , had a great effect on the system performance, where a larger A d /A r led to a lower downcomer liquid velocity and smaller quantity of gas bubbles being dragged into the downcomer. This resulted in low gas holdup, and consequently, low gas-liquid interfacial mass transfer area, which led to a reduction in the overall volumetric mass transfer coefficient. The presence of salinity in the system drastically reduced the bubble size and subsequently led to an enhancement of gas entrainment within the system. As a result, higher gas holdups and gas-liquid interfacial area were observed, and hence, a higher rate of gas-liquid mass transfer was obtained.  相似文献   

8.
Computational Fluid Dynamics (CFD) is used to compare the hydrodynamics and mass transfer of an internal airlift reactor with that of a bubble column reactor, operating with an air/water system in the homogeneous bubble flow regime. The liquid circulation velocities are significantly higher in the airlift configuration than in bubble columns, leading to significantly lower gas holdups. Within the riser of the airlift, the gas and liquid phases are virtually in plug flow, whereas in bubble columns the gas and liquid phases follow parabolic velocity distributions. When compared at the same superficial gas velocity, the volumetric mass transfer coefficient, kLa, for an airlift is significantly lower than that for a bubble column. However, when the results are compared at the same values of gas holdup, the values of kLa are practically identical.  相似文献   

9.
A solution methodology is proposed for the process development and process engineering of a continuously operated jet loop bubble column including integrated external or internal steam generation for, e.g., a high-efficiency large-scale medium pressure methanol and or dimethyl ether production, or other gas to liquid Fischer-Tropsch applications.A jet loop bubble column is defined in the present process development to study the combined integration of a jet-eductor draft tube system with an upper bubble column. The major advantages resulting from the integrated jet-eductor draft tube system in large-scale bubble columns are the guidance and good mixing efficiency of the multiphase flow up to the upper part of the bubble column. Reducing the bubble column operating liquid level at about 2.5-3.0 times of the column diameter above the upper end of the draft tube results in a classical jet-eductor draft tube reactor suitable for small and or medium-scale industrial applications.Methanol synthesis is usually executed catalytically in multistage packed beds at higher pressure, e.g. 26 MPa, and about 350-, resulting in a higher plant installation and operating cost. The successful scale-up of a slurry jet loop bubble column can achieve a higher catalytic selectivity at a lower pressure and temperature , and therefore reduce the overall plant investment and production cost [Toseland, 1999. Three phase flows under extreme conditions of pressure and temperature, Part II: industrial applications, Air products and Chemicals, Inc. Presented at the A.I.Ch.E. Annual Meeting, Dallas, TX; Fan, 1999. Three phase flows under extreme conditions of pressure and temperature, Part I: fundmental characteristics, Department of Chemical Engineering, The Ohio State University. Presented at the A.I.Ch.E. Annuxal Meeting, Dallas, TX]. In addition, the separate slurry production of dimethyl ether, or even coproduction with methanol, can be a more cost-effective process than the classical methanol dehydration process.The new Modified Slurry Process© for large-scale methanol and or dimethyl ether production is presented including internal or external heat exchanger location for steam production.A process concept is developed of a Large Scale Slurry Jet Loop Bubble Column© with external separator, auxiliary internal heat exchanger equipment and high-efficiency gas-liquid slurry jet-eductor mixing system including draft tubes and an upper bubble column. In addition, as comparison a simplified concept is discussed for a small-to-medium-scale slurry jet loop reactor including external steam production and bottom nozzle jet-eductor installation without the presence of an upper bubble column.The basic geometrical parameters of the proposed slurry jet loop bubble column and jet loop reactor are discussed. The influence of the selected geometrical parameters on the gas holdup, interfacial area and mixing is analyzed. Information about catalyst type and particle size distribution is also presented.The definition of optimal operating conditions related to the influence of the fluid dynamics and mixing on mass transfer efficiency and also information for the minimum required power input per unit volume for startup or stable reactor operation are discussed.A simplified estimation method is presented for the expected axial temperature difference across the overall length of the jet bubble column, and also the required heat transfer area of a new construction-type internal compact heat exchanger for efficient reactor cooling and operation.Scale-up is possible for large diameter jet loop bubble columns, typically up to 5 m diameter and 60 m height, including continuous three-phase slurry operation at higher power input and interfacial area, for more efficient synthesis gas absorption and reaction than in classical slurry bubble columns. Integration of suitable designed sieve trays can further guarantee an efficient operation of the lower jet loop draft tube system at higher column diameters and also achieve an efficient reactor operation in the upper bubble column section.  相似文献   

10.
气液固三相浆态床反应器研究进展   总被引:2,自引:1,他引:1  
由于在甲醇合成、费托合成等工艺中的成功应用,气液固三相浆态床反应器的研究引起了越来越多的重视.本文综述了有关浆态床反应器方面的研究,包括:流体力学性能、反应器设计、固液分离以及产业化进程.详细地介绍了影响浆态床反应器流体力学性能的主要因素:压力、温度、气体表观气速、液体性质及固含率等对流型、气含率、气泡停留时间分布和传质系数的影响.总结了近年来在浆态床反应器设计和固液分离方面的研究成果.  相似文献   

11.
高温高压下浆态鼓泡床气液传质系数的测定   总被引:4,自引:0,他引:4  
采用气体动态吸收法,对高温高压下浆态鼓泡床中气液传质系数进行了测定,考察了系统压力、温度、表观气速及固含量等操作条件对传质系数的影响. 结果表明,在温度298~473 K、气体压力1.0~3.0 MPa、表观气速0.03~0.10 m/s、固含量0%~20%(w)的实验条件下,体积传质系数随着压力、温度及表观气速的增加而增大,随固含量的增加而减小. 同时对不同塔径的传质系数进行了比较,表明在相同的操作条件下,大塔的传质系数略高于小塔.  相似文献   

12.
以空气-水-黄沙以及空气-液体石蜡-黄沙两种系统为对象,在常压下用溶氧仪研究了采用小孔式及金属烧结板两种分布器的高固含率三相淤浆反应器的气液传质特性,以及固含率和表观气速等因素对容积气液传质系数kLa的影响,最后得到采用上述两种气体分布器的高固含率三相淤浆床关于容积气-液传质系数的经验关联式。实验证明,金属烧结板具有更好的气液传质特性。  相似文献   

13.
Many experimental studies on the bubble column have been reported by Japanese researchers since around 1960. They include studies of bubble behaviour, bubble size distribution, transition from the homogeneous bubbly flow regime to the heterogeneous liquid circulation regime, liquid velocity distribution, longitudinal liquid mixing, hydrodynamic modelling, the gas holdup, and the volumetric coefficient of gas-liquid mass tranfer kLa. Studies covered various modified bubble columns, such as the airlift reactor with an external or internal loop, the packed bubble column, and others. Performance of three-phase bubble columns, which deal with suspensions or emulsions, and their use as bioreactors or chemical reactors were also studied.  相似文献   

14.
Kai Zhang  Nana Qi  Chunxi Lu 《Fuel》2010,89(7):1361-95
As modified three-phase fluidized reactors, loop reactors have been widely used in the area of chemical and energy processes. An external slurry circulation is introduced into a traditional internal loop reactor to improve the transfer between gas and slurry phases. Gas holdup and bubble dynamics are investigated by using the double-sensor conductivity probe technique in the present work. The results show that gas holdup inside the draft tube is greatly affected by the geometrical configuration and is much higher than that in the corresponding section of the annular region. Local, section-averaged, and overall gas holdups increase with increasing superficial gas velocity, while the effects of solid loading and external slurry circulation velocity are less significant than that of superficial gas velocity. Both local bubble size and bubble rise velocity vary significantly in different regions.  相似文献   

15.
高温高压浆态鼓泡床反应器中的气-液传质   总被引:3,自引:0,他引:3       下载免费PDF全文
The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring the dissolution rate of H2 and CO. The influences of the main operation conditions, such as temperature, pressure,superficial gas velocity and solid concentration, are studied systematically. Two empirical correlations are proposed to predict kLa values for H2 and CO in liquid paraffln/solid particles slurry bubble column reactors.  相似文献   

16.
Gas holdup, effective interfacial area and volumetric mass transfer coefficient were measured in two and three phase downflow bubble columns. The mass transfer data were obtained using the chemical method of sulfite oxidation, and the gas holdup was measured using the hydrostatic technique. Glass beads and Triton 114 were used to study the effects of solids and liquid surface tension on the gas holdup and the mass transfer parameters a and kL a . The gas holdup in three phase systems was measured for non-wettable (glass bead) and wettable (coal and shale particles) solids.

The mass transfer data obtained in the downflow bubble column were compared with the values published for upflow bubble columns. The results indicate that in the range of superficial gas velocities (0.002-0.025) m/s investigated, the values of the mass transfer coefficient were of the same order of magnitude as those observed in upflow systems, but the values of interfacial area were at least two fold greater. Also, the results showed that the operating variables and the physical properties had different influences on a and kL a in the downflow bubble column. Correlations for a and kL a for the downflow bubble column are proposed which predict the data with adequate accuracy in the range of operating conditions investigated.  相似文献   

17.
为了解浆态床鼓泡反应器中气含率的分布规律,在浆态床鼓泡反应器冷模试验装置中,以空气-液体石蜡-氧化铝微球为试验介质对装置内部的气含率进行研究。利用压差法研究了表观气速、浆液固含量等操作条件对反应器床层总体气含率的影响,利用光纤探针法研究了浆态床反应器不同操作条件对局部气含率的影响,总结了反应器内部气含率的分布规律,并由此对工业浆态床鼓泡反应器的设计进行了研究。结果表明:浆态床反应器的总体气含率随表观气速的增大而增大,固体细颗粒的加入能适当降低总体气含率;在反应器底部,分布器对气体的均布作用明显,但表观气速的增大能够弱化分布器的作用;在反应器的中上部气含率不受分布器的影响,沿反应器径向呈现"中间高,边缘低"的分布趋势;在工业费托浆态床中,表观气速不宜低于0.12 m/s,内过滤系统适宜设置于反应器中上部靠近器壁的位置。  相似文献   

18.
Gas-liquid interphase mass transfer was investigated in a slurry bubble column under CO2 hydrate forming operating conditions. Modeling gas hydrate formation requires knowledge of mass transfer and the hydrodynamics of the system. The pressure was varied from 0.1 to 4 MPa and the temperature from ambient to 277 K while the superficial gas velocity reached 0.20 m/s. Wettable ion-exchange resin particles were used to simulate the CO2 hydrate physical properties affecting the system hydrodynamics. The slurry concentration was varied up to 10%vol. The volumetric mass transfer coefficient (klal) followed the trend in gas holdup which rises with increasing superficial gas velocity and pressure. However, klal and gas holdup both decreased with decreasing temperature, with the former being more sensitive. The effect of solid concentration on klal and gas holdup was insignificant in the experimental range studied. Both hydrodynamic and transport data were compared to best available correlations.  相似文献   

19.
The airlift reactor is one of the most commonly used gas–liquid two-phase reactors in chemical and biological processes. The objective of this study is to generate different-sized bubbles in an internal loop airlift reactor and characterize the behaviours of the bubbly flows. The bubble size, gas holdup, liquid circulation velocity, and the volumetric mass transfer coefficient of gas–liquid two-phase co-current flow in an internal loop airlift reactor equipped with a ceramic membrane module (CMM) and a perforated-plate distributor (PPD) are measured. Experimental results show that CMM can generate small bubbles with Sauter mean diameter d32 less than 2.5 mm. As the liquid inlet velocity increases, the bubble size decreases and the gas holdup increases. In contrast, PPD can generate large bubbles with 4 mm < d32 < 10 mm. The bubble size and liquid circulation velocity increase as the superficial gas velocity increases. Multiscale bubbles with 0.5 mm < d32 < 10 mm can be generated by the CMM and PPD together. The volumetric mass transfer coefficient kLa of the multiscale bubbles is 0.033–0.062 s−1, while that of small bubbles is 0.011–0.057 s−1. Under the same flow rate of oxygen, the kLa of the multiscale bubbles increases by up to 160% in comparison to that of the small bubbles. Finally, empirical correlations for kLa are obtained.  相似文献   

20.
A statistical approach was developed to investigate the effects of pressure, temperature, mixing speed and solid concentration on kLa for gaseous hydrogen, ethylene, and propylene in liquid n-hexane containing solid polypropylene powder in a 4-litre agitated reactor. The solubilities of the gases appeared to follow Henry's Law. Statistical correlations to predict kLa were proposed and response surfaces were constructed. kLa values appeared to reach a maximum around 15 mass% and sharply decrease above 30 mass%. The effects of pressure and temperature on kLa were found to depend on the gas-liquid system and operating conditions used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号