首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
Borophosphosilicate bonded porous silicon nitride (Si3N4) ceramics were fabricated in air using a conventional ceramic process. The porous Si3N4 ceramics sintered at 1000–1200 °C shows a relatively high flexural strength and good dielectric properties. The influence of the sintering temperature and contents of additives on the flexural strength and dielectric properties of porous Si3N4 ceramics were investigated. Porous Si3N4 ceramics with a porosity of 30–55%, flexural strength of 40–130 MPa, as well as low dielectric constant of 3.5–4.6 were obtained.  相似文献   

2.
A non-sintering fabrication method for porous Si3N4 ceramics with high porosity and high mechanical strength was proposed. Strength of the porous ceramics can be obtained by silica sol mass transfer process in hydrothermal conditions rather than a traditionally controlled high temperature sintering process. Under hydrothermal circumstances, silica sol is continuously transferred to the necks of Si4N3 powder compact, depositing there and thus consolidating the ceramic skeleton. The key of the method to obtain homogeneous microstructure and mechanical strength is how to keep the silica sol from gelatin during hydrothermal procedure. The stabilization of silica sol and its affecting factors were studied. The results indicated that ultrasonic treatment makes alkali-catalyzed silica sol remain stable even in 200?℃ hydrothermal condition, which insures consecutive silica transportation. The effect of hydrothermal time on open porosity/mechanical strength of the porous Si4N3 ceramics were also thoroughly investigated. The porous Si4N3 ceramics with open porosity above 42% and flexural strength of 45?MPa were obtained without any high temperature sintering process. This method can be widely employed for the preparation of other porous ceramics as well.  相似文献   

3.
《Ceramics International》2018,44(18):22412-22420
In this work, Si3N4 ceramics were fabricated through an aqueous gelcasting method using a low–toxic monomer called N, N–dimethylacrylamide (DMAA) followed by gas pressure sintering at 1850 °C for 2 h under 6 MPa N2 atmosphere. The effect of solid loading on performance of slurries, green and sintered bodies was investigated systematically. The results show that the slurries with a solid loading as high as 50 vol% (viscosity 0.17 Pa.s at 100 s–1) were achieved. With the increase of solid loading (30–50 vol%), the green bodies exhibited a monotonically decreased, however high enough in general, flexural strength of 16.50–11.52 MPa, which was comparable to that of widely–used neurovirulent acrylamide (AM) gelling system. In regard to the sintered bodies, increasing solid loading significantly promoted sintering and improved mechanical properties and thermal conductivity as a result of the increased density, bimodal distribution structure, as well as suitable interfacial bonding strength. The best performance parameters of Si3N4 ceramics, bulk density of 3.25 g/cm3, apparent porosity of 0.67%, flexural strength of 898.92 MPa, fracture toughness of 6.42 MPa m1/2, Vickers hardness of 2.81 GPa, and thermal conductivity of 34.69 W m–1 K–1, were obtained at 50 vol% solid loading. This work renders low–toxic DMAA gelling system promising prospect in preparation of high–performance Si3N4 ceramics by gelcasting.  相似文献   

4.
Porous Si3N4-based ceramics with different TiO2 contents were prepared by gas pressure sintering method. The effects of TiO2 addition ranging from 0 to 25?wt-% on the phase compositions, microstructures, mechanical performance and dielectric properties were investigated. The addition of TiO2 significantly promoted the density which increased from 1.64 to about 2.3?g?cm?3. The mechanical properties of porous Si3N4-based ceramics with TiO2 addition decreased first and then increased with the increase of TiO2 content, and the flexural strength and elastic modulus are more than 167.4?MPa and 72.8?GPa, respectively, which were higher than that of the Si3N4 ceramic without TiO2 addition. With the increase of TiO2 content, both the dielectric constant and dielectric loss increased, and the dielectric constant enhanced obviously. These results suggested that the TiO2 was beneficial for the improvement of mechanical properties and dielectric constant of porous Si3N4-based ceramics.  相似文献   

5.
Porous Si3N4-bonded SiC ceramics with high porosity were prepared by the reaction-sintering method. In this process, Si3N4 was synthesized by the nitridation of silicon powder. The X-ray diffraction (XRD) indicated that the main phases of the porous Si3N4-bonded SiC ceramics were SiC, α-Si3N4, and β-Si3N4, respectively. The contents of β-Si3N4 were increased following the sintering temperature. The morphology of Si3N4 whiskers was investigated by scanning electron microscope (SEM), which was shown that the needle-like (low sintering-temperature) and rod-like (higher sintering-temperature) whiskers were formed, respectively. From low to high synthesized temperature, the highest porosity of the porous Si3N4 bonded SiC ceramic was up to 46.7%, and the bending strength was ~11.6?MPa. The α-Si3N4 whiskers were derived from the reaction between N2 and Si powders, the growth mechanism was proved by Vapor–Solid (VS). Meanwhile, the growth mechanism of β-Si3N4 was in accordance with Vapor–Solid–Liquid (VSL) growth mechanism. With the increase of sintering temperature, Si powders were melted to liquid silicon and the α-Si3N4 was dissolved into the liquid then the β-Si3N4 was precipitated successfully.  相似文献   

6.
The gelcasting technique was employed to prepare Si3N4 green body. The monomers used in the research were acrylamide (AM) and N,N′-methylenebisacrylamide (MBAM). The influences of the monomer content (AM and MBAM) and the ratio of monomers (AM/MBAM) on the warpage rate, shrinkage rate, and the flexural strength of Si3N4 ceramics green body were investigated. Both warpage rate and shrinkage rate of green body were found to decrease with the increase of monomer content, and monotonically increase with the ratio of monomers after drying. The variation of warpage rate with the ratio of monomers is evident when monomer content is 20 wt.%, but the variations are not evident when monomer contents are 40 and 55 wt.%. The flexural strength of the green body is highest at an optimum value of the monomers ratio, and increases with increasing monomer content, reaching 50–90 MPa when monomer contents are 40 and 55 wt.%.  相似文献   

7.
Porous Si3N4/SiC ceramics with high porosity were prepared via nitridation of Si powder, using SiC as the second phase and Y2O3 as sintering additive. With increasing SiC addition, porous Si3N4/SiC ceramics showed high porosity, low flexural strength, and decreased grain size. However, the sample with 20wt% SiC addition showed highest flexural strength and lowest porosity. Porous Si3N4/SiC ceramics with a porosity of 36–45% and a flexural strength of 107‐46MPa were obtained. The linear shrinkage of all porous Si3N4/SiC ceramics is below 0.42%. This study reveals that the nitridation route is a promising way to prepare porous Si3N4/SiC ceramics with favorable flexural strength, high porosity, and low linear shrinkage.  相似文献   

8.
In this paper, novel porous Si3N4 ceramics were prepared by aqueous gelcasting using Si3N4 poly-hollow microspheres as pore-forming agent. The effect of Si3N4 poly-hollow microsphere content on the phase composition, microstructure, shrinkage, porosity and mechanical properties of the prepared porous Si3N4 ceramics were investigated. It is found that there is only β-Si3N4 phase in all the prepared porous Si3N4 ceramics. Meanwhile, the SEM results show that the pores in the porous Si3N4 ceramics distribute uniformly, the added Si3N4 poly-hollow microspheres and the basal body contact closely. With the increase of Si3N4 poly-hollow microsphere content, the shrinkage of the porous Si3N4 ceramics decreases gradually, and the porosity of the porous Si3N4 ceramics decreases firstly and then increases. Furthermore, the flexural strength and fracture toughness of the porous Si3N4 ceramics decrease with the increase of the Si3N4 poly-hollow microsphere content.  相似文献   

9.
《应用陶瓷进展》2013,112(1):20-24
Abstract

Abstract

Low temperature sintering of α‐Si3N4 matrix ceramics was developed in the present study using 4?wt‐%MgO together with Al2O3 or AlPO4 as the sintering additives and spark plasma sintering technique. The results suggested that α‐Si3N4 ceramics could be densified at low sintering temperature by adjusting both the sintering temperature and sintering additive content. For low temperature sintered α‐Si3N4 ceramics, using MgO and Al2O3 as the sintering additives, the densification is not complete at a temperature lower than 1600°C, and the mechanical strength is <200?MPa. When MgO and AlPO4 were used as the sintering additives, the increase in AlPO4 content not only declines the sintering temperature but also promotes the mechanical property of the sintered Si3N4 ceramics. It was the AlPO4 phosphate binder that played a significant role in low temperature sintering of Si3N4 ceramics.  相似文献   

10.
A camphene-based freeze-casting method was adopted to create ceramics with aligned, equiaxed pores applied so far exclusively for ceramics—is demonstrated for ZrO2 porous ceramics. The pore volume fraction, channel size and pore shape were controlled by varying the freezing temperature, solid content and sintering condition. After sublimation of camphene, the samples were sintered for 2 h at elevated temperatures ranging from 1400 to 1550 °C. The initial level of solid loading played a primary role in the resulting porosity of the product. The porosity decreased from 82.5 to 65.5 vol.% when the solid loading was increased from 10 to 20 vol.%. The relationship of the compressive strength versus initial solid loading and sintering temperature was discussed. This technique is considered potentially useful in fabricating novel porous ceramics with special structure, and introduces a new application field of freeze-casting.  相似文献   

11.
A low-toxic and water-soluble monomer N, N-dimethylacrylamide (DMAA) was employed as a gelling agent in the gelcasting of porous Si3N4 ceramics. The process conditions and composition for slurry preparation (with a solid loading of 36?vol%), the consolidation and sintering of green bodies were investigated and optimized. The effects of various factors such as zeta potential, pH value of the premix solution, dispersant dosage and ball milling time on the rheological properties of the slurries were investigated. The results suggest that the best rheological properties (66.5 mPa.s at a shear rate of 96.3?s?1) of the slurries were obtained when pH value ranged between 9 and 11, dispersant dosage reached 1?wt%, and ball milling time was 6?h. All the as-prepared green bodies showed a homogeneous microstructure and high flexural strength ≥ 26?MPa with a maximum up to 46.3?MPa when the ratio of DMAA to MBAM, initiator dosage, polymerization temperature and time were 14, 1?wt%, 70?°C and 90?min, respectively. The sintered bodies had a homogeneous microstructure, excellent and regulatable properties, a flexural strength of 216.3–327.3?MPa, and a porosity of 39.6–29.1% by varying the sintering temperature from 1710?°C to 1810?°C and the holding time from 1?h to 3?h. The superior comprehensive effect makes DMAA a promising candidate for an environmentally friendly gelling agent in gelcasting of porous Si3N4 ceramics.  相似文献   

12.
The effect of carboxymethyl cellulose (CMC) addition on the preparation of Si3N4 ceramic foam by the direct foaming method was investigated. The addition of CMC in the foam slurry can reduce the surface tension, increase the viscoelasticity of foams, and improve their stability and fluidity. The foam ceramics show low shrinkage during drying owing to the CMC and the gelation of acrylamide monomers. The surface structure of dried foam is uniform, and there are no macropores and cracks on the surface. The sintered Si3N4 foam ceramics have very uniform pore distribution with average pore size of about 16 μm; the flexure strength is as high as 3.8–77.2 MPa, and the porosity is about 60.6–82.1%.  相似文献   

13.
Y-Si-Al-O-N glasses are intergranular phases in silicon nitride based ceramics in which the composition and volume fraction of oxynitride glass phases determine the sintering/shrinkage behaviour. Several investigations on oxynitride glass formation and properties have shown that addition of nitrogen increases glass transition and softening temperatures, viscosity, elastic modulus and hardness. In the present study, effect of TiO2 addition on thermal and mechanical properties of Y-Si-Al-O-N glasses is investigated since the most typical Si3N4 ceramics for bearing applications are fabricated using a Si3N4-Y2O3-Al2O3-TiO2-AlN system. Addition of TiO2 is effective in preparing Y-Si-Al-O-N glasses with lower glass transition temperatures and with higher hardness.  相似文献   

14.
Thermal shock resistance of Si2N2O–Si3N4 composites was evaluated by water quenching and subsequent three-point bending tests of strength diminution. Si2N2O–Si3N4 composites which was prepared with in situ liquid pressureless sintering process using Yb2O3 and Al2O3 powders as sintering additives by gelcasting showed no macroscopic cracks and the critical temperature difference (ΔTc) could be up to 1400 °C. A mass of pores existed in the sintered body and the irregular shaped fibers extended from the pores increased the thermal shock property.  相似文献   

15.
Si_3N_4陶瓷具有优异的力学性能和导热性能,然而其固有的高硬度和脆性极大地限制了其加工性能。通过添加导电相改善Si3N4陶瓷的导电性能可实现对Si_3N_4陶瓷的电火花加工。添加的导电相主要包括钛基化合物(TiN、TiC、TiC N、TiB_2)、锆基化合物(Zr B_2、Zr N)和MoSi_2等导电陶瓷以及碳纳米管(CNT)、碳纳米纤维(CNF)、石墨烯纳米片(GNP)等导电碳基纳米材料。本论文详细回顾了Si_3N_4基导电陶瓷的研究进展,并对今后Si_3N_4基导电陶瓷的发展趋势进行了展望。  相似文献   

16.
Si3N4 porous ceramics with improved mechanical strength were fabricated for the first time by a combined foam-gelcasting and microwave-nitridation method at 1273–1373?K. The Si3N4 porous samples prepared at 1373?K/20?min with the porosity of 68.9% had respectively flexural and compressive strength as high as 8.1 and 20.8?MPa, which values were comparable or even superior to those of Si3N4 porous ceramics prepared previously by the conventional heating technique at a much higher temperature of 1773–1973?K, indicating that present preparation strategy is feasible to prepare high quality Si3N4 porous ceramic at a much milder condition. Moreover, the thermal conductivity of as-prepared Si3N4 porous ceramics at 1073?K was as low as 1.697?W/(m?K), suggesting it could be a potentially good heat insulating material for aluminum electrolyte cells.  相似文献   

17.
This paper focuses on investigating the technical potential for fabricating porous ceramic bioscaffolds for the repair of osseous defects from trauma or disease by inverse replication of three–dimensional (3–D) printed polymer template. Si3N4 ceramics with pore structure comprising orderly–interconnected big pore channels and well–distributed small pores are successfully fabricated by a technique combining 3–D printing, vacuum suction filtration and oxidation sintering. The Si3N4 ceramics fabricated from the Si3N4 powder with addition of 10?wt% talcum by sintering at 1250?°C for 2?h have little deformation, uniform microstructure, low linear shrinkage of 4.1%, high open porosity of 58.2%, relatively high compression strength of 6.4?MPa, orderly–interconnected big pore channels and well–distributed small pores, which are promising bioscaffold in the field of bone tissue engineering.  相似文献   

18.
《Ceramics International》2019,45(16):19925-19933
Herein, a low–toxic N, N–dimethylacrylamide (DMAA) system was used in preparation of porous Si3N4 ceramics by aqueous gelcasting, and variations in microstructure and properties with solid loading and calcination temperature were systematically investigated. In the considered solid loading range of 28–44 vol%, all the slurries exhibited superior rheological properties (≤145 mPa⋅s at 95.40 s−1 for 44 vol% solid loading) perfectly suitable for casting. With increasing solid loading, a decreased bulk density (1.71–1.69 g/cm3), volume shrinkage (37.73–13.77%) and flexural strength (46.56–26.75 MPa) of green bodies were obtained, exhibiting better mechanical properties than those derived from the conventional acrylamide (AM) system. Regarding Si3N4 ceramics with various solid loadings, the increase in calcination temperature favored the phase transformation α→β–Si3N4 and β–Si3N4 growth, however, the increased solid loading exhibited an inhibiting effect on those since mass transport in gas phase was blocked due to the disruption of pore connectivity. The resulting microstructure changes imparted Si3N4 ceramics increasing flexural strength (110.36–367.88 MPa), fracture toughness (2.54–5.03 MPa⋅m1/2), as well as decreasing porosity (54.21–41.05%) and pore size (0.38–0.33 μm). This work demonstrates the potential research value of DMAA system in preparing high–performance porous Si3N4 ceramics through gelcasting technique.  相似文献   

19.
《Ceramics International》2022,48(20):29900-29906
Porous Si3N4 ceramics are widely used in the aerospace field due to its lightweight, high-strength, and high wave transmission. Traditional manufacturing methods are difficult to fabricate complex structural and functional ceramic parts. In this paper, selective laser sintering (SLS) technology was applied to prepare porous Si3N4 ceramics using AlN as an inorganic binder. And the effects of AlN content on the properties of the obtained ceramic samples were explored. As the AlN content increased, nano-Al2O3 and nano-SiO2 formed the eutectic liquid phase, enhancing the sintering densification and phase transformation of Si3N4 poly-hollow microspheres (PHMs). The island-like partial densification structures in Si3N4 green bodies increased. During the high-temperature sintering, the eutectic liquid phase partially transformed into the mullite phase or reacted with AlN and Si3N4 to form the Sialon phase. With the increase of AlN content, the fracture mode of Si3N4 ceramics changed from fracturing along PHMs to fracturing across PHMs. The bonding depth between PHMs increased and the connection between the grains was tighter, so the Si3N4 ceramics became denser. With the increase of AlN addition, the total porosity of the porous Si3N4 ceramics tended to decrease and the flexural strength gradually increased. When AlN content was 20 wt%, the total porosity and the flexural strength were 33.6% and 23.9 MPa, respectively. The addition of AlN inorganic binder was carried out to develop a novel way to prepare high-performance porous Si3N4 ceramics by SLS.  相似文献   

20.
SnO2-doped CaSiO3 ceramics were successfully synthesized by a solid-state method. Effects of different SnO2 additions on the sintering behavior, microstructure and dielectric properties of Ca(Sn1−xSix)O3 (x=0.5–1.0) ceramics have been investigated. SnO2 improved the densification process and expanded the sintering temperature range effectively. Moreover, Sn4+ substituting for Si4+ sites leads to the emergence of Ca3SnSi2O9 phase, which has a positive effect on the dielectric properties of CaO–SiO2–SnO2 materials, especially the Qf value. The Ca(Sn0.1Si0.9)O3 ceramics sintered at 1375 °C possessed good microwave dielectric properties: εr =7.92, Qf =58,000 GHz and τf=−42 ppm/°C. The Ca(Sn0.4Si0.6)O3 ceramics sintered at 1450 °C also exhibited good microwave dielectric properties of εr=9.27, Qf=63,000 GHz, and τf=−52 ppm/°C. Thus, they are promising candidate materials for millimeter-wave devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号