首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The magnet system of ITER includes high temperature superconducting (HTS) current leads with a maximum current of 68 kA for the toroidal field (TF) coils, 55 kA for the poloidal field (PF)/central solenoid (CS) coils and 10 kA for the control coils (CC), respectively. Although different in terms of size and operative conditions, the ITER HTS current leads have been all designed on the basis of an established concept, which was successfully developed for the LHC at CERN and proven by the so-called 70 kA “demonstrator” lead made by KIT and by the ITER pre-prototypes made by ASIPP in China. A broad R&D campaign has been undertaken by ASIPP and CERN in order to find optimized designs for each component of the leads. Nevertheless, a comprehensive picture of the performance of the entire HTS current leads is not yet available. In this paper, a steady state, full length, thermal-hydraulic 1-D modeling is applied to the study of the three types (TF, PF/CS, CC) of ITER HTS current leads. The results of this predictive analysis are then compared with relevant ITER requirements. It was found that the present design of the HTS current leads will fulfill these specifications.  相似文献   

2.
In the last few years, the critical current densities of long commercially available REBa2Cu3O7?x (RE-123, where RE represents Y or a rare earth element) coated conductors have reached values of 250 A/cm-width at 77 K and zero applied field. Even higher values of 600 A/cm-w (77 K, B = 0) have been demonstrated in shorter lengths. The attractive features of the use of these high-Tc superconductors (HTS) are operation temperatures above 20 K and/or magnetic fields higher than those envisaged for the ITER TF coils. Possible operation conditions for HTS fusion magnets have been studied taking into consideration the possible further improvements of RE-123 coated conductors. Investigations of stability and quench behavior indicate that stability is not a problem, whereas quench detection and protection need attention. Because of the high currents necessary for fusion magnets, many tapes need to be assembled into a transposed conductor. The qualification of HTS conductors for fusion magnets would require their test at magnetic fields of 11 T and currents well above 10 kA. The possibilities to test straight HTS conductor samples in SULTAN have been considered. For a test at 4.5 K, only the development of a low resistance joint between the HTS conductor under test and the NbTi transformer of SULTAN would be necessary. Tests up to 20 K would require that the HTS sample is connected with the NbTi transformer by a conduction-cooled HTS bus bar of large thermal resistance similar to the HTS module of a current lead. HTS conductor tests at temperatures around 50 K would be possible with modified cryogenics.  相似文献   

3.
《Fusion Engineering and Design》2014,89(9-10):2241-2245
The remountable (mountable and demountable repeatedly) high-temperature superconducting (HTS) magnet has been proposed for huge and complex superconducting magnets in future fusion reactors to fabricate and repair easily the magnet and access inner structural components. This paper summarizes progress in R&D activities of mechanical joints of HTS conductors in terms of the electrical resistance and heat transfer performance at the joint region. The latest experimental results show the low joint resistance, 4 nΩ under 70 kA current condition using REBCO HTS conductor with mechanical lap joint system, and for the cooling system the maximum heat flux of 0.4 MW/m2 is removed by using bronze sintered porous media with sub-cooled liquid nitrogen. These values indicate that there is large possibility to design the remountable HTS magnet for fusion reactors.  相似文献   

4.
During the last few years, progress in the field of second-generation High Temperature Superconductors (HTS) was breathtaking. Industry has taken up production of long length coated REBCO conductors with reduced angular dependency on external magnetic field and excellent critical current density jc. Consequently these REBCO tapes are used more and more in power application.For fusion magnets, high current conductors in the kA range are needed to limit the voltage during fast discharge. Several designs for high current cables using High Temperature Superconductors have been proposed. With the REBCO tape performance at hand, the prospects of fusion magnets based on such high current cables are promising. An operation at 4.5 K offers a comfortable temperature margin, more mechanical stability and the possibility to reach even higher fields compared to existing solutions with Nb3Sn which could be interesting with respect to DEMO.After a brief overview of HTS use in power application the paper will give an overview of possible use of HTS material for fusion application. Present high current HTS cable designs are reviewed and the potential using such concepts for future fusion magnets is discussed.  相似文献   

5.
The first ITER Main Busbar (MBCN1) and Correction Busbar (CBCN1) conductor samples were manufactured in ASIPP and tested in the SULTAN facility. This paper introduces the sample manufacture, including strand, cabling, jacketing and sample preparation, and discusses the performance of MBCN1 and CBCN1 conductors. The testing results show that both samples have high Tcs, and meet the ITER requirement.Due to the ITER acceptance standard Tcs of MB conductor was changed to 6.7 K at 45.5 kA/3.9 T. The performance of MBCN1 conductor after cyclic load fits the ITER requirement, but the sample was only tested at 57 kA/2.75 T before cycling test. Using some hypothesis and equation to extrapolate the Tcs performance of MBCN1 conductor before cycling test, the result also fits the ITER requirement.For CBCN1 conductor, the central line of the central cooling spiral shifted about 1.3 mm during the cabling. The deviation causes an increase of the max self-field by about 0.005 T, which could not influence the CBCN1 conductor real Tcs performance at peak field.  相似文献   

6.
The paper presents the results of development and testing of an explosively actuated circuit-breaker (the so-called pyrobreaker) designed and manufactured at the Efremov Institute [1]. In accordance with the ITER specifications this switch will be used for continuous operation with DC currents up to 70 kA and shall be capable, on command, to transfer this current to a resistive load under a voltage up to 10 kV in less than 1 ms.A number of current commutation tests have been carried out on several prototypes [2]. The last experimental campaign has demonstrated reliable operation of the pyrobreaker with 20% safety margin for the interrupted current and 100% margin for the recovery voltage relative to the ITER requirements.Besides, peak current withstand tests have been performed with pulse currents up to 420 kA generated by the unipolar current generator available at the Efremov Institute.  相似文献   

7.
The High Temperature Superconductor (HTS) current leads (CL) for the Wendelstein 7-X stellarator (W7-X) with a maximum current of 18.2 kA are designed and manufactured by the Karlsruhe Institute of Technology (KIT). In addition the acceptance tests of the W7-X HTS CLs are performed at KIT. Therefore the existing TOSKA facility has been extended by a test cryostat connected to the main vacuum vessel. After the extensive prototype CL test campaigns in 2010 the final acceptance tests of 14 series CLs started in 2011. The estimated completion of the routine test campaign is in December 2012. The main parts of each acceptance test are the determination of the heat load at the 4.5 K level, of the necessary 50 K He mass flow rate through the heat exchanger as well as the simulation of a loss of flow accident of the 50 K He mass flow at full current (18.2 kA). The tests also include a long-time operation at the maximum current of 18.2 kA to demonstrate the steady state operation capability of the HTS CLs. In the present paper an overview of all conducted HTS CL acceptance tests is given. The results for the different CLs are summarized and compared to the specifications.  相似文献   

8.
From February 2007 to May 2008, 18 short length conductor sections have been tested in SULTAN for design verification and manufacturer qualification of the ITER Toroidal Field (TF) conductor. The test program is focussed on the current sharing temperature, Tcs, at the nominal operating conditions, 68 kA current and 11.15 T effective field, which can be fully reproduced in the SULTAN test facility. A broad range of results was observed, with over 2 K difference among the Tcs of the conductors. In average, the results are poorer compared to the potential performance estimated from the strand scaling law. The key parameters to mitigate the degradation are not yet clearly identified. The experimental challenges to test conductors with performance degradation are highlighted, including enhanced instrumentation sets, the application of gas flow calorimetry to sense the current sharing power and the post-processing of voltage data to cancel the transverse potential across the cable. The updated schedule of the tests in SULTAN is presented with the short-term action plan for conductor test.  相似文献   

9.
The modifying of the JT-60U magnet system to the superconducting coils is progressing as a satellite facility for ITER by both parties of Japanese government and European commission in the Broader Approach agreement. The magnet system requires current supplies of 25.7 kA for 18 TF coils and of 20 kA for 4 CS modules and 6 EF coils. The magnet system generates an average heat load of 3.2 kW at 4 K to the cryogenic system. The feeder components connected to the power supply provide current supply. The cooling pipes connected to the cryogenic system provide coolant supply. The instrumentation of the JT-60SA magnet system is used for its operation.  相似文献   

10.
The ITER superconducting magnet system generates an average heat load of 23 kW at 4 K to the cryoplant, from nuclear and thermal radiation, conduction and electromagnetic heating, and requires current supplies 10–68 kA to 48 individual coils. The helium flow to remove this heat, consisting of supercritical helium at pressures up to 1.0 MPa and temperature between 4.3 and 4.7 K, is distributed to the coils and structures through 30 separate feeder lines. The feeders also contain the electrical supplies to the coil, helium supply pipes and the instrumentation lines, and are integrated with the current lead transitions to room temperature. The components consist of the in-cryostat feeders, the cryostat feedthroughs and the coil terminal boxes (CTBs). This paper discusses the functional requirements on the feeder system and presents the latest design concept and parameters of the feeder components.  相似文献   

11.
A novel concept of bridge joint for Poloidal field (PF) magnet of SST-1 with damaged winding pack has been realized. This joint has been fabricated on 5th and 6th layers of PF#3T coil winding pack (WP) after validation at 10 kA at liquid helium temperature of 4.2 K in current lead test chamber. The joint resistance of bridge joint was measured ∼1.6 nΩ at flat top DC current of 10 kA. This type of joint could be economically useful for revival of a shorted and damaged WP superconducting PF magnets of Tokamaks. In this paper, details of bridge joint design, fabrication and validations are discussed.  相似文献   

12.
The aim of the ASDEX Upgrade (AUG) programme is to support the design, prepare the physics base and develop regimes beyond the baseline of ITER and for DEMO. Its ITER-like geometry, poloidal field system, versatile heating system and power fluxes make AUG particularly suited.After the transition to fully tungsten coated plasma facing components AUG could be operated without prior boronizations and a low permanent deuterium retention was found qualifying W as wall material. ITER-like baseline H-modes (H98  1, βN  2) were routinely achieved up to 1.2 MA plasma currents. W concentrations could be kept at an acceptable level of <5 × 10?5 by central wave heating (enhancing impurity outward transport) and ELM pacing with gas puffing. The compatibility of high performance improved H-modes, the ITER hybrid scenario, with an un-boronized W wall was demonstrated achieving H98  1.1 and βN up to 2.6 at modest triangularities δ  0.3. This performance is reached despite the gas puffing needed for W influx control. Increasing δ to 0.35 allowed at even higher puff rates still a H98  1.1.Reliable plasma operation in support of ITER comprised the demonstration of ECRF assisted low voltage plasma start-up and current rise at toroidal electric fields below 0.3 V/m resulting in a ITER compatible range of plasma internal inductance of 0.71–0.97. Disruption mitigation is feasible using strong gas puffs, and the achieved electron densities approach values needed for runaway suppression.Present hardware extensions in support of ITER include the upgrading of ECRH by a 4 MW/10 s system with large deposition variability (tuneable frequency between 105 and 140 GHz, real-time steerable mirrors) for central heating and MHD mode control. A powerful system of 24 in-vessel coils produces error fields up to toroidal mode number n = 4 for ELM suppression and mode rotation control. In connection with a close conducting wall they will open up the road for RWM stabilization in advanced scenarios. For those we are considering LHCD for current drive and profile control with up to 500 kA driven current. The tungsten sources are dominated by sputtering from intrinsic light impurities, and the W influx from the outboard limiters are the main source for the core plasma. ICRH induced electric fields accelerate light impurities, restricting the use of ICRH to just after boronization. 4-strap antennas imbedded in extended wall structures might solve this problem. Finally, doubling the plasma volume with plasma currents above 2 MA in AUG could be the solution for a needed ITER satellite.  相似文献   

13.
Intensive research over the past decades demonstrated that the mechanical material performance of epoxy based glass fiber reinforced plastics, which are normally used by industry as insulating materials in magnet technology, degrades dramatically upon irradiation to fast neutron fluences above 1 × 1022 m?2 (E > 0.1 MeV). which have to be expected in large fusion devices like ITER. This triggered an insulation development program based on cyanate ester (CE) and blends of CE and epoxies, which are not affected up to twice this fluence level, and therefore appropriate for large fusion magnets like the ITER TF coils. Together with several suppliers resin mixtures with very low viscosity over many hours were developed, which renders them suitable for the impregnation of very large volumes. This paper reports on a qualification program carried out during the past few years to characterize suitable materials, i.e. various boron-free R-glass fiber reinforcements interleaved with polyimide foils embedded in CE/epoxy blends containing 40% of CE, a repair resin, a conductor insulation, and various polyimide/glass fiber bonded tapes. The mechanical properties were assessed at 77 K in tension and in the interlaminar shear mode under static and dynamic load conditions prior to and after reactor irradiation at ~340 K to neutron fluences of up to 2 × 1022 m?2 (E > 0.1 MeV). i.e. twice the ITER design fluence. The results confirmed that a sustainable solution has become available for this critical magnet component of ITER.  相似文献   

14.
An accelerated fusion energy development program, a “fast-track” approach, requires proceeding with a nuclear and materials testing program in parallel with research on burning plasmas, ITER. A Fusion Nuclear Science Facility (FNSF) would address many of the key issues that need to be addressed prior to DEMO, including breeding tritium and completing the fuel cycle, qualifying nuclear materials for high fluence, developing suitable materials for the plasma-boundary interface, and demonstrating power extraction. The Advanced Tokamak (AT) is a strong candidate for an FNSF as a consequence of its mature physics base, capability to address the key issues, and the direct relevance to an attractive target power plant. The standard aspect ratio provides space for a solenoid, assuring robust plasma current initiation, and for an inboard blanket, assuring robust tritium breeding ratio (TBR) >1 for FNSF tritium self-sufficiency and building of inventory needed to start up DEMO. An example design point gives a moderate sized Cu-coil device with R/a = 2.7 m/0.77 m, κ = 2.3, BT = 5.4 T, IP = 6.6 MA, βN = 2.75, Pfus = 127 MW. The modest bootstrap fraction of ƒBS = 0.55 provides an opportunity to develop steady state with sufficient current drive for adequate control. Proceeding with a FNSF in parallel with ITER provides a strong basis to begin construction of DEMO upon the achievement of Q  10 in ITER.  相似文献   

15.
ITER is targeting Q = 10 with 500 MW of fusion power. To meet this target, the plasma needs to be controlled and shaped for a period of hundreds of seconds, avoiding contact with internal components, and acting against instabilities that could result in the loss of control of the plasma and in its disruptive termination.Axisymmetric magnetic control is a well-understood area being the basic control for any tokamak device. ITER adds more stringent constraints to the control primarily due to machine protection and engineering limits. The limits on the actuators by means of the maximum current and voltage at the coils and the few hundred ms time response of the vacuum vessel requires optimization of the control strategies and the validation of the capabilities of the machine in controlling the designed scenarios.Scenarios have been optimized with realistic control strategies able to guarantee robust control against plasma behavior and engineering limits due to recent changes in the ITER design. Technological issues such as performance changes associated with the optimization of the final design of the central solenoid, control of fast transitions like H to L mode to avoid plasma-wall contact, and optimization of the plasma ramp-down have been modeled to demonstrate the successful operability of ITER and compatibility with the latest refinements in the magnetic system design.Validation and optimization of the scenarios refining the operational space available for ITER and associated control strategies will be proposed. The present capabilities of magnetic control will be assessed and the remaining critical aspects that still need to be refined will be presented. The paper will also demonstrate the capabilities of the diagnostic system for magnetic control as a basic element for control. In fact, the noisy environment (affecting primarily vertical stability), the non-axisymmetric elements in the machine structure (affecting the accuracy of the identification of the plasma boundary), and the strong component of eddy current at the start-up (resulting in a poor S/N ratio for plasma reconstruction for Ip < 2 MA requiring a robust plasma control) make the ITER magnetic diagnostic system a demanding part of the magnetic control and investment protection systems. Finally the paper will illustrate the identified roles of magnetic control in the PCS (plasma control system) as formally defined in the recent first step of the design and development of the system.  相似文献   

16.
The ITER tokamak will be fuelled at a time averaged rate of up to 200 Pam3 s?1 requiring neutralised gas in the divertor to be pumped to balance the fuelling and remove the fusion helium and other impurities in the exhaust. This is achieved on ITER using large bespoke cryo-sorption pumps. In this paper design evolution of the ITER divertor pumping system is outlined from the 1998 configuration to the current design. Details of the new, 6 direct pump, system design which will be used in the build of ITER are given. The operating modes of the new system configuration for different plasma scenarios are described and the performance of the new system is analysed and compared with previous baselines.  相似文献   

17.
A Korean high heat flux test facility for the semi-prototype (SP) qualification of an ITER first wall (FW) will be constructed to evaluate the fabrication technologies required for the ITER FW, and the acceptance of these developed technologies will be established for the ITER FW manufacturing procedure. Korea participated in this qualification program, and is responsible for suitable arrangements for the heat flux test of our fabricated SPs. Qualification testing can be started provided that adequate quality and control measures are implemented and validated by the ITER Organization (IO). The controlling measures required for all heat flux tests shall be concrete and demonstrate the satisfaction of the IO test programs. Each country shall provide a test plan covering the quality and controlling measures in the high heat flux test facility to be implemented throughout the test program. Korean high heat flux testing for these ITER plasma facing materials will be performed by using a 60 kV electron beam and a power supply system of 300 kW, where the allowable target dimension is 70 cm × 50 cm in a vacuum chamber. In addition, this facility needs a cooling system for a high-temperature target and decontamination system for beryllium filtration.  相似文献   

18.
Force-cooled concept has been chosen for ITER superconducting magnet to get reliable coil insulation using vacuum-pressure impregnation (VPI) technology. However 17 breakdowns occurred during operation of six magnets of this type or their single coil tests at operating voltage < 3 kV, while ITER needs 12 kV. All the breakdowns started on electric, cryogenic and diagnostic communications (ECDCs) by the high voltage induced at fast current variations in magnets concurrently with vacuum deterioration, but never on the coils, though sometimes the latter were damaged too. It suggests that simple wrap insulation currently employed on ECDCs and planned to be used in ITER is unacceptable. Upgrade of the ECDC insulation to the same level as on the coils is evidently needed. This could be done by covering each one from ECDCs with vacuum-tight grounded stainless steel casings filled up with solid insulator using VPI-technology. Such an insulation will be insensitive to in-cryostat conditions, excluding helium leaks and considerably simplifying the tests thus allowing saving time and cost. However it is not accepted in ITER design yet. So guarantee of breakdown prevention is not available.  相似文献   

19.
Coolant water in blankets and divertor cassettes will be activated by neutrons during ITER operation. 16N and 17N are determined to be the most important activation products in the coolant water in terms of their impact on ITER design and performance. In this study, the geometry of cooling channels in blanket module 4 was described precisely in the ITER neutronics model ‘Alite-4’ based on the latest CAD model converted using MCAM developed by FDS Team. The 16N and 17N concentration distribution in the blanket, divertor cassette and their primary heat transport systems were calculated by MCNP with data library FENDL2.1. The activation of cooling pipes induced 17N decay neutrons was analyzed and compared with that induced by fusion neutrons, using FISPACT-2007 with data library EAF-2007. The outlet concentration of blanket and divertor cooling systems was 1.37 × 1010 nuclide/cm3 and 1.05 × 1010 nuclide/cm3 of 16N, 8.93 × 106 nuclide/cm3 and 0.33 × 105 nuclide/cm3 of 17N. The decay gamma-rays from 16N in activated water could be a problem for cryogenic equipments inside the cryostat. Near the cryostat, the activation of pipes from 17N decay neutrons was much lower than that from fusion neutrons.  相似文献   

20.
Sensitivity studies performed as part of the ITER IO design review highlighted a very stiff dependence of the maximum Q attainable on the machine parameters. In particular, in the considered range, the achievable Q scales with Ip^4. As a consequence, the achievement of the ITER objective of Q = 10 requires the machine to be routinely operated at a nominal current Ip of 15 MA, and at full toroidal field BT of 5.3 T. This paper analyses the capabilities of the poloidal field (PF) system (including the central solenoid) of ITER against realistic full current plasma scenarios. An exploration of the ITER operational space for the 15 and 17 MA inductive scenario is carried out. An extensive analysis includes the evaluation of margins for the closed loop shape control action. The overall results of this analysis indicate that the control of a 15 MA plasma in ITER is likely to be adequate in the range of li 0.7–0.9 whereas, for a 17 MA plasma, control capabilities are strongly reduced. The ITER operational space, provided by the reference pre-2008 PF system, was rather limited if compared to the range of parameters normally observed in present experiment. Proposals for increasing the current and field limits on PF2, PF5 and PF6, adjustment on the number of turns in some of the PF coils, changes to the divertor dome geometry, to the conductor of PF6 to Nb3Sn, moving PF6 radially and/or vertically are described and evaluated in the paper. Some of them have been included in 2008 ITER revised configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号