首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of manganese based catalysts have been tested in a combined plasma-catalyst reactor in the reaction of toluene removal from air. In the standard conditions (toluene = 240 ppm, energy density = 172 J/L, 1 g of catalyst, 315 mL/min), the best catalyst (manganese oxide supported on active carbon) is able to transform 55% of the toluene into carbon oxides. According to the study of the reaction mechanism, it appears that the toluene is oxidized both in-plasma by short-lived species generated by plasma and in post-plasma on the catalyst surface by the ozone formed in the plasma, the reaction on the catalyst being more selective in carbon dioxide formation than the reaction in plasma. We have shown that the toluene conversion increases when the toluene concentration in air decreases. A model able to describe the behavior of the plasma reactor and the plasma-catalyst reactor is proposed.  相似文献   

2.
CeCu composite oxide catalysts were prepared by a hard-template method (CeCu-HT) and a complex method (CeCu-CA). The prepared CeCu composite oxide catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) analyses. The catalytic properties of the prepared CeCu composite oxide catalysts were also investigated by the catalytic combustion of toluene in air. XRD results showed that the synthesized CeCu composite oxide catalysts had different phase components and crystallinities but similar CeO2CuO solid solution phases. Low-angle XRD, TEM, and BET results indicated that the prepared CeCu-HT catalyst had a developed ordered mesoporous structure and a large specific surface area of 206.1 m2 g?1. Toluene catalytic combustion results indicated that the CeCu-HT catalyst had higher toluene catalytic combustion activity in air than the CeCu-CA catalyst. The minimum reaction temperature at which toluene conversion exceeded 90% for toluene catalytic combustion on the CeCu-HT catalyst was 225 °C. The toluene catalytic combustion conversion on the CeCu-HT catalyst at 240 °C exceeded 99.3% with decreased toluene concentration in air to below 70 ppm. On the other hand, the toluene catalytic combustion conversion on the CeCu-CA catalyst was only 92% even when the reaction temperature reached 280 °C. The differences between the toluene catalytic combustion performances of the CeCu composite oxide catalysts prepared by different methods can be attributed to their discrepant compositions and structures.  相似文献   

3.
The reactivity of various gases, namely; O2, air, CO2, H2 and N2, with carbon deposited on alumina-supported Co–Ni catalyst during propane reforming in a fluidized bed reactor at 773–973 K using relatively low feed steam:carbon ratio (0.8–1.5) has been investigated in a thermogravimetric analysis unit. Analysis of the transient solid weight loss revealed that carbon removal mechanism is dependent on the type of gasifying agent. Carbon gasification kinetics using O2 and air followed the Avrami-Erofeev (A2) model while data for both CO2 and H2 were captured by the geometrical (contracting area, R2) model. However, carbon gasification with inert N2 proceeded at much slower rate (about 10 times lower than air) and was adequately fitted by the one-dimensional diffusion (D1) model. Specific reaction rates from these phenomenological models were also linearly correlated with the catalyst carbon content with reactivity coefficient of the gasifying agent decreasing in the order, O2 > air > CO2 > H2 > N2. In order to minimize energy consumption during catalyst regeneration, reduce greenhouse gas emissions and reduce catalyst sintering, it would be desirable to employ a mixture of air and CO2 as the carbon gasifying agent to take advantage of the coupled exothermic (air oxidation) and endothermic (reverse Boudouard reaction involving CO2 and carbon) nature taking place during the carbon removal operation.  相似文献   

4.
The need for more complete removal of sulfur from fuels is due to the lower allowable sulfur content in gasoline and diesel, which is made difficult by the increased sulfur contents of crude oils. This work reports an experimental study on the hydrodesulfurization (HDS) of diesel in a slurry reactor. HDS of straight-run diesel using a NiMoS/Al2O3 catalyst was studied in a high-pressure autoclave for the following operating conditions: 4.8–23.1 wt% catalyst in the reactor, 320–360 °C, 3–5 MPa pressure, and 0.56–2.77 L/min hydrogen flow rate. It was found that the reaction rate was proportional to the catalyst amount and increased with temperature, pressure and hydrogen flow rate. The reaction kinetics for the HDS reaction in the slurry reactor was obtained. As compared with HDS in a fixed bed reactor, HDS in a slurry reactor is promising because of the uniform temperature profile, high catalyst efficiency, and online removal and addition of catalyst.  相似文献   

5.
The CO2 hydrogenation to methanol is favored by high pressure from the thermodynamic point of view. Mostly experimental work on this reaction is limited at 400 bar due to technical and safety reasons. In this work we present a high pressure plant able to conduct CO2 hydrogenation reactions at pressures up to 950 bar in a capillary microreactor; we focus on the influence of pressure concerning process intensification.To validate the plant functionality the reverse water–gas shift (RWGS) reaction was conducted over a 1 wt% Pt/CeO2 catalyst at 450 °C and between 200 and 950 bar. A mass flow controller for hydrogen was developed due to lack of commercial available hydrogen mass flow controller able to work in the micro liter per minute range and up to 1000 bar. Additional to the RWGS reaction two more reactions take place. The first is the CO disproportionation reaction which results in deposited carbon on the catalyst. The second is the subsequent hydrogenation of carbon to methane. The experimentally determined CO2 conversion is clearly below the equilibrium of the entire reaction network, hence the reaction is kinetically limited. The reaction performance increases with pressure showing process intensification.  相似文献   

6.
The Co–Ni/Al2O3 catalysts prepared using impregnation procedure, were used for the Fischer–Tropsch synthesis. The effect of calcination conditions of the catalyst as well as reactor situation was studied. It was found that the catalyst calcined at 550 °C for 6 h in air atmosphere has shown the best catalytic performance for CO hydrogenation. The best operational conditions were obtained as following: T = 350 °C, P = 1 atm and H2/CO = 2/1.  相似文献   

7.
The uncatalyzed selective oxidation of cyclohexane with air was performed at high-p,T-conditions in a microcapillary reactor. Operation pressures were between 2.0 and 8.0 MPa and operating temperatures between 453 and 533 K. The measured space-time-yield showed only a slight dependence on the pressure, but a strong dependence on temperature. At 533 K, a space-time-yield of about 6.000 kg/(m3 h) was reached, which corresponds to a size of 2 m×2 m×2 m (8 m3) of the microstructured reactor assuming a capacity of 100.000 t/a compared to 500 m3 total reactor volume realized with a cascade of bubble columns of each about 100 m3. Unfortunately, selectivity drops at this temperature below 80% which is significantly lower than the selectivity in the conventional process. Passivating the capillary walls with silicon allowed an increase in selectivity. By fitting a simple mass transfer/reaction model for molecular oxygen, the mass transfer coefficient could be determined for T=453 K and a 0.75 mm capillary as kL=3.04×10?3 m/s. With the help of the Hatta number, mass transfer limitations can be excluded for the microcapillary reactor, whereas the bubble column reactor is weakly limited by the gas/liquid mass transfer of the molecular oxygen. Thus, process intensification by enhancing mass transfer using a microstructured reactor for cyclohexane oxidation with air is quite low.  相似文献   

8.
《Catalysis communications》2007,8(11):1739-1742
The removal of CH4 (3600 ppm) with O2 (3 × 104 ppm) in mixtures with Ar or N2 as carrier gas has been studied in a plasma-catalyst system. The plasma yields CO plus H2O as majority products. A small extra oxidation to CO2 is found at 338 K when a catalyst (SiO2 or La1−xSrxCoO3−d (x = 0.5) perovskite) is placed in the glow zone of the plasma. With the perovskite, the oxidation efficiency to CO2 increased with temperature up to 90% at 453 K. This result supports that this lanthanum substituted cobaltite further activates the plasma species producing a synergetic effect where the specific surface area is not a critical factor as previously reported in the literature.  相似文献   

9.
In this study, a micro-structured catalytic hollow fiber membrane reactor (CHFMR) has been prepared, characterized and evaluated for performing steam methane reforming (SMR) reaction, using Rh/CeO2 as the catalyst and a palladium membrane for separating hydrogen from the reaction. Preliminary studies on a catalytic hollow fiber (CHF), a porous membrane reactor configuration without the palladium membrane, revealed that stable methane conversions reaching equilibrium values can be achieved, using approximately 36 mg of 2 wt.%Rh/CeO2 catalyst incorporated inside the micro-channels of alumina hollow fibre substrates (around 7 cm long in the reaction zone). This proves the advantages of efficiently utilizing catalysts in such a way, such as significantly reduced external mass transfer resistance when compared with conventional packed bed reactors. It is interesting to observe catalyst deactivation in CHF when the quantity of catalyst incorporated is less than 36 mg, although the Rh/CeO2 catalyst supposes to be quite resistant against carbon formation. The “shift” phenomenon expected in CHFMR was not observed by using 100 mg of 2 wt.%Rh/CeO2 catalyst, mainly due to the less desired catalyst packing at the presence of the dense Pd separating layer. Problems of this type were solved by using 100 mg of 4 wt.% Rh/CeO2 as the catalyst in CHFMR, resulting in methane conversion surpassing the equilibrium conversions and no detectable deactivation of the catalyst. As a result, the improved methodology of incorporating catalyst into the micro-channels of CHFMR is the key to a more efficient membrane reactor design of this type, for both the SMR in this study and the other catalytic reforming reactions.  相似文献   

10.
《Fuel》2006,85(12-13):1631-1641
Chemical-looping reforming is a technology that can be used for partial oxidation and steam reforming of hydrocarbon fuels. This paper describes continuous chemical-looping reforming of natural gas in a laboratory reactor consisting of two interconnected fluidized beds. Particles composed of 60 wt% NiO and 40 wt% MgAl2O4 are used as bed material, oxygen carrier and reformer catalyst. There is a continuous circulation of particles between the reactors. In the fuel reactor, the particles are reduced by the fuel, which in turn is partially oxidized to H2, CO, CO2 and H2O. In the air reactor the reduced oxygen carrier is reoxidized with air. Complete conversion of natural gas was achieved and the selectivity towards H2 and CO was high. In total, 41 h of reforming were recorded. Formation of solid carbon was noticed for some cases. Adding 25 vol% steam to the natural gas reduced or eliminated the carbon formation.  相似文献   

11.
Methanol value addition reaction has been studied on lab-synthesized nano-crystalline ZSM-5, Si/Al = 13 (NZ) possessing particle size of ∼29–51 nm and a micro-crystalline ZSM-5 (MZ) of similar atomic ratio is also taken as standard for comparison studies. The NZ sample exhibited excellent catalytic activity to produce 50.7 wt.% of high octane (Research Octane Number = 137) gasoline blending stock rich in desired toluene and xylene components, while the undesired benzene is very low, suitable for fuel applications. The superior performance of NZ to MZ catalyst reflected in three fold increase in gasoline yield and considerably high time-on-stream performance.  相似文献   

12.
We have developed a direct current plasma pretreatment of the Fe catalyst to increase the area density of vertically-aligned carbon nanotube forests. The carbon wall density of the double- and multi-walled nanotubes reaches 4.8 × 1012 cm−2, with a 40% volume occupancy and a mass density of ∼0.4 g cm−3. The plasma pretreatment works by reducing the sintering of the catalyst nanoparticles during growth. This treatment increases the forest density by 8 times compared to the standard growth conditions.  相似文献   

13.
Ceria–zirconia mixed oxides (CeZr) were glycol-thermally synthesised as nano-crystalline supports with tunable ratios for the anchoring of nickel–cobalt (Ni–Co) catalyst to enhance methane dry reforming (MDR) reaction with carbon dioxide. High conversion of methane (90%) and carbon dioxide (92%), good output (H2 = 32%; CO = 44%), and selectivity and stability of syngas prove the effectiveness of the catalyst deposited on this support. 80:20 for Ce:Zr was identified as the optimal ratio to attain active and stable catalytic performance in MDR, with a low coking content of 0.47 wt.%.  相似文献   

14.
Vapor-phase methylation of toluene with methanol and isopropylation of toluene with 2-propanol has been investigated in a down flow reactor under atmospheric conditions using N2 gas carrier over a series of surface modified and unmodified ZSM-5 (Si/Al = 60–170) loaded with H3PO4, differing in the external surface treatment of the zeolites. The feed molar ratios of toluene/methanol and toluene/2-propanol were varied over a wide range (8–0.125), and the optimum feed ratio of toluene/alcohol was less than 0.5 in both cases. Space velocity employed in toluene methylation reported as WHSV (toluene) = 1.2 h−1, and the space velocity employed in toluene isopropylation reported as WHSV (toluene) = 0.8 h−1. The methylation reactions were carried out in the temperature range of 623–773 K, and the isopropylation reactions were carried out in the temperature range of 483–583 K. Atmospheric pressures was maintained in all runs. Catalysts containing 0–4.9 wt.% P were prepared using modified and unmodified ZSM-5 zeolites, and their catalytic performance for vapor-phase alkylation of toluene with methanol and 2-propanol were investigated. The optimum phosphorous content for methylation was 2.1 wt.% P which was greater than the optimum phosphorous loading for isopropylation (0.7 wt.% P).  相似文献   

15.
《Catalysis communications》2002,3(10):493-496
Palladium(II) containing hydrotalcite (Pd-HT) has been found to be an efficient and reusable catalyst in Heck reaction between aryl halides (X = Br, I) and olefins to give carbon–carbon coupled products in good to moderate yields.  相似文献   

16.
Libraries consisting of more than 100 zeolite samples were prepared and examined for developing a promising HC trap catalyst. Parallel adsorptions of toluene onto the catalyst samples were conducted over a 10 × 10 array reactor under dry and wet conditions with or without a heating process three knowledge-based conditions for developing an automotive catalyst during the cold-start period. FAU and BEA type zeolites revealed a high performance of toluene adsorption under the dry condition. However, FAU type zeolite significantly decreased the amount of toluene adsorbed in the presence of water in the feed gas stream, mainly due to the hydrophobicity of the catalyst surface. Over Beta type zeolites, the toluene adsorbed was found to be considerably preserved, even after forced desorption temperature-ramping to the warm-up condition of an automotive engine. Li, K, or Ag ion-exchanged Beta zeolites seem to be particularly promising as an HC trap catalyst.  相似文献   

17.
This work achieves continuous transesterification of soybean oil and methanol in a spinning disk reactor. The effects of the methanol-to-oil molar ratio, catalyst type, catalyst concentration, reaction temperature, flow rate, and rotational speed were investigated. Optimal yield of 96.9% was obtained with a residence time of 2–3 s at a molar ratio of 6, potassium hydroxide concentration of 1.5 wt%, temperature of 60 °C, flow rate of 773 mL/min, and rotational speed of 2400 rpm. The production rate of 1.86 mol/min was high compared to that of other reactors for continuous transesterification process, indicating that a spinning disk reactor is a promising alternative method for continuous biodiesel production.  相似文献   

18.
The effect of superficial air velocity on lovastatin production by Aspergillus terreus PL10 using wheat bran and wheat straw was investigated in a 7 L and a 1200 L packed bed reactor. Mass transfer and reaction limitations on bioconversion in the 1200 L reactor was studied based on a central composite design of experiments constructed using the superficial air velocity and solid substrate composition as variables and lovastatin production as response. The surface response prediction showed a maximum lovastatin production of 1.86 mg g−1 dry substrate on day 5 of the bioconversion process when the reactor was operated using 0.19 vvm airflow rate (23.37 cm min−1 superficial air velocity) and 54% substrate composition (wC). Lovastatin production did not increase significantly with superficial air velocity in the 7 L reactor. Variation in temperature and exit CO2 composition was recorded, and the Damköhler number was calculated for lovastatin production at these two scales. The results showed that in larger reactors mass transfer limitation controlled bioconversion while in smaller reactors bioconversion was controlled by reaction rate limitations. In addition, mass transfer limitations in larger reactors reduced the rate of metabolic heat removal, resulting in hot spots within the substrate bed.  相似文献   

19.
We synthesized onion-like carbon-encapsulated Co, Ni, and Fe (Co–C, Ni–C, and Fe–C) magnetic nanoparticles with low cytotoxicity using pulsed plasma in a liquid. The pulsed plasma is induced by a low-voltage spark discharge submerged in a dielectric liquid. The face-centered cubic Co and Ni, and body-centered cubic Fe core nanoparticles showed good crystalline structures with an average size between 20 and 30 nm were encapsulated in onion-like carbon coatings with a thickness of 2–10 nm. Vibrating-sample magnetometer measurements revealed the ferromagnetic properties of as-synthesized samples at room temperature (Co–C = 360 Oe, Fe–C = 380 Oe, and Ni–C = 211 Oe). Raman-spectroscopy analysis found onion-like carbon shells composed of well-organized graphitic structures. Thermal gravimetric analysis showed a high stability of the as-synthesized samples under thermal treatment and oxidation. Cytotoxicity measurements showed higher cancer cell viability than samples synthesized by different methods.  相似文献   

20.
Pellets consisting of the para-selective HZSM-5 crystals prepared by the chemical liquid deposition (CLD) with tetraethyl orthosilicate (TEOS) were used as the catalyst for alkylation of toluene with ethylene in supercritical carbon dioxide. The pellets were formed by compressing the CLD modified HZSM-5 crystals with and without addition of the binder alumina. When the binder was used, the CLD was applied again right after the compression. For the addition of 0.1 ml of TEOS per gram of pellet, p-ethyltoluene yield and selectivity were found to be sufficiently close to those using the modified crystals and the compressed pellets without containing the binder. The alkylation was carried out in a tubular reactor packed with the prepared HZSM-5 pellets. From a study of the operating variables including temperature, pressure, weight hourly space velocity of toluene, and molar ratio of toluene to ethylene, the highest yield and selectivity of p-ethyltoluene were determined as 70 and 97%, respectively, at a temperature of 623 K, a pressure of 13.1 MPa, a weight hourly space velocity of 5.0 (g of toluene)/(g of catalyst)/h and a molar ratio of toluene to ethylene of 5. The obtained results indicate a pronounced shape-screening effect of the prepared HZSM-5 pellets and an applicability of using supercritical CO2 as the carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号