首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
2.
Data concerning the length of longitudinal cracks on the surface of continuously cast steel slabs were collected from two plants. The data were analyzed to find the relation between crack length and crack frequency. The analysis revealed the following.
(1)  After normalization to eliminate the effect of different casting conditions, the fractal relation characterizing the normalized cumulative frequency distribution (N (m−2)) and the crack length (L (mm)) of the primary surface cracks could be represented by the equation
where N c is the cumulative frequency before normalization, γ is the normalizing coefficient, and k c is a constant.
(2)  The values for γ varied over a wide range, but remained constant throughout a heat and were the same for both the upper and lower faces of the slab.
(3)  It was found that in some instances, when L exceeded a critical value (L c), the value of L became δ times longer than the length predicted by the previous distribution. This increase in L was ascribed to secondary growth of the cracks. This occurred more frequently on the lower, rather than on the upper, face of the slab. The product of L c and δ was approximately constant. The formation of the surface cracks is discussed in view of the fractal phenomena.
  相似文献   

3.
4.
A systematic examination of the effect of intense deformation on the crystallization behavior of amorphous Al85Y10Fe5, Al86Y9Fe5, and Al88Y5Fe7 alloys demonstrated a strong composition dependence of the crystallization reactions at true strain levels of about −500 pct. Primary crystallization occurs during the deformation of the Al88Y5Fe7 alloy, but for the Al86Y9Fe5 and Al85Y10Fe5 alloys, deformation-induced crystallization is not observed at a true strain of about −500 pct. At strain levels of the order of −1200 pct, the Al85Y10Fe5 alloy develops regions with primary Al, which is not observed during thermal processing of the same amorphous alloy without deformation. In addition, at strain levels of −1200 pct, a deformed Al88Y7Fe5 sample displays strong microstructural heterogeneities. Transmission electron microscopy (TEM) analysis showed the presence of nanocrystal dispersions adjacent to shear bands with a total width of about half a micrometer. The results demonstrate that the phase selection during deformation-induced crystallization can deviate from the thermally-induced phase selection. Novel phases and microstructures can thus be obtained from the deformation processing of amorphous alloys. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, FL, under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.
R.J. Hebert (Assistant Professor)Email:
  相似文献   

5.
6.
7.
The microstructure and mechanical properties of Cu50Zr50−x Ti x (2.5 ≤ x ≤ 7.5) glass matrix composites have been investigated. The presence of austenitic (Pm-3m)/martensitic phases (P21/m and Cm) enhances the plastic deformability significantly. These composites show high yield strength up to 1753 MPa and large plastic strain over 15 pct. Their high strength scales with the volume fraction of glassy matrix and crystalline phase. When the austenitic phase forms instead of the martensite, the work hardening of the composite material increases. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, Florida under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.
S. Pauly (Postdoctoral Student)Email:
  相似文献   

8.
9.
Bulk amorphous alloys of (Zr41.2Ti13.8Cu12.5Ni10Be22.5)100−x Nb x with x = 0, 5, 11, and 13 were prepared by water quenching. Differential scanning calorimeter (DSC) analysis revealed that the addition of Nb enhances the thermal stability but appreciably decreases the glass-forming ability (GFA) of the alloys. Scanning electron microscope (SEM) and compression tests indicated that the Nb addition effectively improves the strength and plasticity of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 amorphous alloy, which benefits from multiple shear bands induced by ductile crystalline phase dispersing in the amorphous matrix. The bulk amorphous alloy with x = 5 exhibits a fracture stress of 2070 MPa and total strain to fracture of 25.8 pct, respectively. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007, during the TMS Annual Meeting in Orlando, FL, under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.
G. Chen (Professor)Email:
  相似文献   

10.
11.
12.
13.
14.
15.
The structure of hyper-eutectic Zr x Pt100−x (73 ≤ x ≤ 77) metallic glasses produced by melt spinning was examined with high-energy synchrotron X-ray diffraction (HEXRD) and fluctuation electron microscopy. In addition, details of the amorphous structure were studied by combining ab initio molecular dynamics and reverse Monte Carlo simulations. Crystallization pathways in these glasses have been reported to vary dramatically with small changes in compositions; however, in the current study, the structures of the different glasses were also observed to vary with composition, particularly the prepeak in the total structure factor that occurs at a Q value of around 17 nm−1. Results from simulations and fluctuation electron microscopy suggest that the medium-range order of the amorphous structure is characterized by extended groups of Pt-centered clusters that increase in frequency, structural order, or spatial organization at higher Pt contents. These clusters may be related to the Zr5Pt3 structure, which contains Pt-centered clusters coordinated by 9Zr and 2Pt atoms. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, Florida under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.
D.J. Sordelet (Senior Scientist and Group Leader)Email:
  相似文献   

16.
Phase relationships in the Fe−Mn−C system in the temperature range 600 to 1100°C have been studied using metallographic and X-ray methods and the electron microprobe. Isothermal sections of the phase diagram of the system are reported based on the present results and those of earlier investigators. The fcc λ-phase (austenite) containing carbon is stable at all values ofy Mn=x Mn/(x Mn+x Fe) in the range 890 to 1100°C and in a more restricted composition range at lower temperatures. Its composition under conditions of equilibrium with the carbides (Fe, Mn)3C, (Fe, Mn)23C6, ε, and liquid are shown for several temperatures. The free energy of formation of the cementite phase, (Fe, Mn)3C, at 1000°C, from γ-Fe, γ-Mn (undercooled) and graphite is ΔG 1273=−35,790y Mn−2760y Fe+3RT (y Mn lny Mn+y Fe lny Fe). The data show that the alloyed cementite is essentially and ideal mixture of Fe3C and Mn3C,i.e., the metal atoms are distributed at random on the metal sites in the lattice. ROBERT BENZ, formerly of the Research Staff, Massachusetts Institute of Technology, Cambridge, Massachusetts  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号