首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A test bench was developed and the conversion of the organic matter of coal (OMC) in supercritical water (SCW) was studied under conditions of a continuous supply of a water-coal suspension to a vertical flow reactor at 390–760°C and a pressure of 30 MPa. From 44 to 63% OMC was released as liquid and gaseous products from coal particles (from the water-coal supension) during the time of fall to the reactor. This stage was referred to as the dynamic conversion of coal. The particles passed through the stage of the dynamic conversion of coal did not agglomerate in the reactor in the subsequent process of batch conversion in a coal layer at T = 550–760°C. The volatile products of the overall process of the dynamic and batch conversion of coal included saturated hydrocarbons (CH4 and C2H6), aromatic hydrocarbons (C6H6, C7H8, and C8H10), synthesis gas (H2 and CO), and CO2. At T < 600°C, CO2 and CO were the degradation products of oxygen-containing OMC fragments, whereas they also resulted from the decomposition of water molecules at higher temperatures in accordance with the reaction (C) + H2O = CO + H2. The mechanisms were considered, and the parameters responsible for the dynamic conversion of coal were calculated.  相似文献   

2.
Gas evolution kinetics of two coal samples during rapid pyrolysis   总被引:1,自引:0,他引:1  
Quantitative gas evolution kinetics of coal primary pyrolysis at high heating rates is critical for developing predictive coal pyrolysis models. This study aims to investigate the gaseous species evolution kinetics of a low rank coal and a subbituminous coal during pyrolysis at a heating rate of 1000 °C s− 1 and pressures up to 50 bar using a wire mesh reactor. The main gaseous species, including H2, CO, CO2, and light hydrocarbons CH4, C2H2, C2H4, C2H6, C3H6, C3H8, were quantified using high sensitivity gas chromatography. It was found that the yields of gaseous species increased with increasing pyrolysis temperature up to 1100 °C. The low rank coal generated more CO and CO2 than the subbituminous coal under similar pyrolysis conditions. Pyrolysis of the low rank coal at 50 bar produced more gas than at atmospheric pressure, especially CO2, indicating that the tar precursor had undergone thermal cracking during pyrolysis at the elevated pressure.  相似文献   

3.
The pyrolysis of tire powder was studied experimentally using a specially designed pyrolyzer with high heating rates. The composition and yield of the derived gases and distribution of the pyrolyzed product were determined at temperatures between 500 and 1000 °C under different gas phase residence times. It is found that the gas yield goes up while the char and tar yield decrease with increasing temperature. The gaseous product mainly consists of H2, CO, CO2, H2S and hydrocarbons such as CH4, C2H4, C2H6, C3H6, C3H8, C4H8 and C4H6 with a little other hydrocarbon gases. Its heating value is in the range of 20 to 37 MJ/Nm3. Maximum heating value is achieved at a temperature between 700 and 800 °C. The product distribution ratio of gas, tar and char is about 21:44:35 at 800 °C. The gas yield increases with increasing gas residence time when temperature of the residence zone is higher than 700 °C. The gas heating value shows the opposite trend when the temperature is higher than 800 °C. Calcined dolomite and limestone were used to explore their effect on pyrolyzed product distribution and composition of the gaseous product. It is found that both of them affect the product distribution, but the effect on tar cracking is not obvious when the temperature is lower than 900 °C. It is also found that H2S can be absorbed effectively by using either of them. About 57% sulfur is retained in the char and 6% in the gas phase. The results indicated that high-energy recovery could not be achieved if fuel gas is the only target product. In view of this, multi-use of the pyrolyzed product is highly recommended.  相似文献   

4.
Inorganic complexes were added to low-rank coals by step-wise pH adjustment of a mixture of inorganic solution and brown coal while avoiding the formation of precipitates. The nature and amounts of the added inorganic depend on the pH of the coal/solution mixture and concentration of inorganic salts. The amount of hydroxide added for high loading of iron to coal is consistent with added multinuclear complexes. Computer generated models of brown coal with multi-iron species account for observed OH/Fe ratios. X-ray photoelectron spectroscopy (XPS) data for these samples are consistent with multi-iron species in coal. Computer molecular modelling of two brown coal models with added inorganics shows monodentate carboxyl coordination to metals is sterically favoured. Mononuclear Fe(III) with bidentate carboxyl coordination form distorted structures and are energetically unfavoured. Modelling indicates significant reductions in partial charges on metal centres, consistent with a redistribution of electron density on complexation. Low temperature pyrolysis of brown coals with added inorganics provides increased yields of gases, no detectable tar and lower char, compared with acid washed coals. Gasification of these coals using a nitrogen/oxygen mix at 150–200 °C yields CO, while steam gasification at 250–450 °C yields CO2, CO and CH4. Iron oxide/carbonate complexes are postulated during the pyrolysis and gasification.  相似文献   

5.
A wire mesh reactor was used to investigate the devolatilization process of coal particle during entrained flow gasification. Coal from Indonesia East Kalimantan mine, which has high moisture and high volatile matter, was chosen as a sample. Experiments were carried out at the heating rate of 1,000 °C/s and isothermal condition was kept at peak temperature under atmospheric pressure. The char, tar and gas formation characteristics of the coal as well as the composition of the gas components at peak temperatures were determined. The experimental results showed that devolatilization process terminated when temperature reached above 1,100 °C. Most of tar was formed at about 800 °C, while the rate of tar formation decreased gradually as the temperature increased. CH4 was observed at temperatures above 600 °C, whereas H2 was detected above 1,000 °C. The amount of formed gases such as H2, CO, CH4 and C n H m increased as the temperature increased. From the characteristics of devolatilization with residence time, it was concluded that devolatilization terminated within about 0.7 second when the temperature reached 1,000 °C. As the operating temperature in an entrained flow gasifier is higher than ash melting temperature, it is expected that the devolatilization time of high volatile coal should be less than one second in an entrained flow gasifier.  相似文献   

6.
Lightweight glass‐ceramic material similar to foam glass was obtained at 700°C–800°C directly from alkali‐activated silica clay and zeolitized tuff without preliminary glass preparation. It was characterized by low bulk density of 100–250 kg/m3 and high pore size homogeneity. Chemical processes occurring in alkali‐activated silica clay and zeolitized tuff were studied using X‐ray diffraction, thermal gravimetry, IR‐spectroscopy, and scanning electron microscopy. Pore formation in both compositions is caused by dehydration of hydrated sodium polysilicates (Na2mSiO2·nH2O), formed during alkali activation. Additional pore‐forming gas source in alkali‐activated zeolitized tuff is trona, Na3(CO3)(HCO3)·2H2O, formed during interaction between unbound NaOH and CO2 and H2O from air. Influence of mechanical activation of raw materials on chemical processes occurring in alkaline compositions was also studied.  相似文献   

7.
An analysis was carried out of degradation products of model compounds polyethylene glycol and ethylene diphenylcarbamate. Pyrolysis has been effected at 350 and 400°C under nitrogen and in vacuo. The products were analyzed by gas chromatography. Aniline, CO2, CO, C2H4, CH3CHO, etc., were found.  相似文献   

8.
René Cyprès  Samuel Furfari 《Fuel》1982,61(5):447-452
Hydropyrolysis (HyPy) of a high-sulphur (4.3 wt% mf) and high-calcite (7.3 wt% mf) subbituminous coal (Sulcis coal) has been studied in a semi-batch fixed-bed reactor under a pressure of 1 or 3 MPa from 580 to 850 °C. The maximum temperature attained is not necessarily the temperature that the reactor is set but depends on the pressure and nature (reactive or not) of the gas; this phenomenon is due to the heat from the exothermic HyPy reaction. There is a correlation between the amount of heat released during the hydrogénation and the amount of water formed. The maximum conversion obtained is 62.5 wt% maf under H2 at 3 MPa and 850 °C. The char, oil, water, gas (CH4, C2H4, C2H6, CO, C02) yields and the oil analysis are reported. A significant proportion of the C02 evolved during the reaction results from the decomposition of the mineral matter rich in carbonates. A proportion of the CO evolved results from the degradation of phenols, a reaction which is catalysed by calcite and/or lime, and as a consequence the oil yield is reduced.  相似文献   

9.
The devolatilisation behaviour of Yallourn brown coal was investigated under rapid heating conditions using two different flash pyrolysers: a fluid-bed reactor giving coal particle heating rates of 104 °Cs?1 with a gas residence time of about 0.5 s and a shock tube which generated heating rates of the order of 107 °Cs?1 and a 1 ms reaction time. Yields of products are reported covering pyrolysis temperatures in the range 400–2300 °C. Hydrocarbon gas yields reached maximum values which were remarkably similar for both reactors although occurring at different temperatures. Carbon oxide production was also similar for both reactors with CO yields reaching 30% wt/wt daf coal. These high yields of CO are very different from those reported for slow heating conditions. It appears that on flash heating, coal decomposition pathways change in a manner which increases CO yields at the expense of H20 and to a lesser extent C02, resulting in the volatilisation of additional carbon from the coal.  相似文献   

10.
A study on pyrolysis of palm oil wastes in a countercurrent fixed bed was carried out, aiming to characterize the hydrogen rich gas products in view of enhanced energy recycling. The effects of temperature, residence time and catalyst adding on the yields and distribution of hydrogen rich gas products were investigated. The main gas species generated, as identified by Micro-GC, were H2, CO, CO2, CH4 and trace amounts of C2H4 and C2H6. With temperature increasing from 500 °C to 900 °C, the total gas yield was enhanced greatly and reached the maximum value (∼ 70 wt.%, on the raw biomass sample basis) at 900 °C with big portions of H2 (33.49 vol.%) and CO (41.33 vol.%). Residence time showed a significant influence on the upgrading of H2 and CO2 yields. The optimum residence time (9 s) was found to get a higher H2 yield (10.40 g/kg (daf)). The effect of adding chemicals (Ni, γ-Al2O3, Fe2O3 and La/Al2O3, etc.) on gas product yield was investigated and adding Ni showed the greatest catalytic effect with the maximum H2 yield achieved at 29.78 g/kg (daf).  相似文献   

11.
The rate of evolution of CH4, CO, CO2, H2, C2 hydrocarbons, and C3 hydrocarbons during pyrolysis of Colorado oil shale between 25 and 900 °C is reported. All experiments were performed nonisothermally using linear heating rates varying from 0.5 to 4.0 °C min?1. Hydrogen is the major noncondensable gas produced by kerogen pyrolysis. The amount of H2 released is influenced, via the shift and Boudouard reactions, by the CO2 evolved from mineral carbonates. Lesser amounts of C1, C2, and C3 hydrocarbons are produced. On the basis of heat content, however, the combined C1 to C3 hydrocarbons contribute twice as much as H2 to the heating value of the pyrolysis gas. The evolution of H2 and CH4 involves processes that are interpreted as a ‘primary’ pyrolysis of the kerogen to generate oil, and a higher temperature ‘secondary’ pyrolysis of the carbonaceous residue. The CO formed is a product of the Boudouard reaction; nearly complete conversion of the carbon residue to CO via this reaction is observed.  相似文献   

12.
Five German hard coals of 6–36 wt% volatile matter yield (maf) were pyrolysed at pressures up to 10 MPa, using two different apparatuses, which mainly differ in the heating rates. One consists of a thermobalance where a coal sample of ≈ 1.5 g is heated at a rate of 3 K min ?1 under a gas flow of 3 I min?1. The other apparatus is constructed for rapid heating (102?103 K s?1) of a small sample of ≈10 mg of finely-ground coal distributed as a layer between the folded halfs of a stainless-steel screen, heated by an electric current. The product gas composition was determined by quantitatively analysing for H2, CH4, C2H4, C2H6, CO, CO2 and H2O. The amounts of tar and char were measured by weighing. The heating rate, pressure and gas atmosphere were varied. Under an inert gas atmosphere, high heating rates result in slightly higher yields of liquid products, e.g. tar. The yields of light hydrocarbon gases remain the same. With increasing pressure, the thermal cracking of tar is intensified resulting in high yields of char and light hydrocarbon gases. Under H2, pyrolysis is influenced strongly at elevated pressure. Additional amounts of highly aromatic products are released by hydrogenation of the coal itself, particularly between 500 and 700°C. This reaction is less effective at higher heating rates because of the shorter residence time and diffusion problems of H2. The yield of light gaseous compounds CH4 and C2H6 increases markedly under either heating condition owing to gasification of the reactive char.  相似文献   

13.
Chemical Looping Combustion technology involves circulating a metal oxide between a fuel zone where methane reacts under anaerobic conditions to produce a concentrated stream of CO2 and water and an oxygen rich environment where the metal is reoxidized. Although the needs for electrical power generation drive the process to high temperatures, lower temperatures (600–800°C) are sufficient for industrial processes such as refineries. In this paper, we investigate the transient kinetics of NiO carriers in the temperature range of 600 to 900°C in both a fixed bed microreactor (WHSV = 2‐4 g CH4/h/g oxygen carrier) and a fluid bed reactor (WHSV = 0.014‐0.14 g CH4/h per g oxygen carrier). Complete methane conversion is achieved in the fluid bed for several minutes. In the microreactor, the methane conversion reaches a maximum after an initial induction period of less than 10 s. Both CO2 and H2O yields are highest during this induction period. As the oxygen is consumed, methane conversion drops and both CO and H2 yields increase, whereas the CO2 and H2O concentrations decrease. The kinetics parameter of the gas–solids reactions (reduction of NiO with CH4, H2, and CO) together with catalytic reactions (methane reforming, methanation, shift, and gasification) were estimated using experimental data obtained on the fixed bed microreactor. Then, the kinetic expressions were combined with a detailed hydrodynamic model to successfully simulate the comportment of the fluidized bed reactor. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

14.
Six thermoplastics, which represent more than two-thirds of all polymer production in western Europe, were pyrolysed in a static batch reactor in a nitrogen atmosphere. These were high density polyethylene (HDPE), low density polyethylene (LDPE), polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET) and polyvinyl chloride (PVC). The heating rate used was 25°C min−1 to a final temperature of 700°C. These six plastics were then mixed together to simulate the plastic fraction of municipal solid waste found in Europe. The effect of mixing on the product yield and composition was examined. The results showed that the polymers studied did not react independently, but some interaction between samples was observed. The product yield for the mixture of plastics at 700°C was 9·63% gas, 75·11% oil, 2·87% char and 2·31% HCl. The gases identified were H2, CH4, C2H4, C2H6, C3H6, C3H8, C4H8, C4H10, CO2 and CO. The composition of oils were determined using Fourier Transform infra-red spectrometry and size exclusion chromatography. Analysis showed the presence mainly of aliphatic compounds with small amounts of aromatic compounds. ©1997 SCI  相似文献   

15.
To reveal the effect mechanism of CO atmosphere on coal pyrolysis, a study on raw and demineralized lignite was carried out in a horizontal tube furnace under N2 and CO/N2 atmosphere. CO had a negligible effect on the char yield at low temperatures, whereas it enhances the char yield at temperatures higher than 550 °C. The release of tar was higher in the presence of CO above 450 °C because of more free radicals, which reduced low‐temperature crosslinking, and higher selectivity of hydroxyl groups to phenols in the CO‐containing atmosphere. The yields of CO2 and H2 increased, water and CO yields decreased under CO/N2 atmosphere. Light hydrocarbon gases were not affected by changing the reaction atmosphere. The difference between product yields from raw and demineralized coal confirmed that the catalysis of inherent minerals had a great catalytic effect on the water‐gas shift reaction and Boudouard reaction.  相似文献   

16.
《Ceramics International》2017,43(4):3639-3646
The electrochemical cell consisting of a gadolinium-doped ceria (GDC, Ce0.9Gd0.1O1.95) porous electrolyte, Ni–GDC cathode and Ru–GDC anode was applied for the dry-reforming (CH4+CO2→2H2+2CO) of a real biogas (CH4 60.0%, CO2 37.5%, N2 2.5%) produced from waste sweet potato. The composition of the supplied gas was adjusted to CH4/CO2=1/1 volume ratio. The supplied gas changed continuously into a H2–CO mixed fuel with H2/CO=1/0.949–1/1.312 vol ratios at 800 °C for 24 h under the applied voltage of 1–2 V. The yield of the mixed fuel was higher than 80%. This dry-reforming reaction was thermodynamically controlled at 800 °C. The application of external voltage assisted the reduction of NiO and the elimination of solid carbon deposited slightly in the cathode. The decrease of heating temperature to 700 °C reduced gradually the fraction of the H2–CO fuel (61.3–18.6%) within 24 h. Because the Gibbs free energy change was calculated to be negative values at 700–600 °C, the above result at 700–600 °C originated from the gradual deposition of carbon over Ni catalyst through the competitive parallel reactions (CH4→C+2H2, 2CO→C+CO2). The application of external voltage decreased the formation temperature of carbon by the disproportionation of CO gas. At 600 °C, the H2–CO fuel based on the Faraday's law was produced continuously by the electrochemical reforming of the biogas.  相似文献   

17.
This paper reports the performance of porous Gd-doped ceria (GDC) electrochemical cells with Co metal in both electrodes (cell No. 1) and with Ni metal in the cathode and Co metal in the anode (cell No. 2) for CO2 decomposition, CH4 decomposition, and the dry reforming reaction of a biogas with CO2 gas (CH4 + CO2 → 2H2 + 2CO) or with O2 gas in air (3CH4 +?1.875CO2 +?1.314O2 → 6H2 +?4.875CO +?0.7515O2). GDC cell No. 1 produced H2 gas at formation rates of 0.055 and 0.33?mL-H2/(min?m2-electrode) per 1?mL-supplied gas/(min?m2-electrode) at 600?°C and 800?°C, respectively, by the reforming of the biogas with CO2 gas. Similarly, cell No. 2 produced H2 gas at formation rates of 0.40?mL-H2/(min?m2) per 1?mL-supplied gas/(min?m2) at 800?°C from a mixture of biogas and CO2 gas. The dry reforming of a real biogas with CO2 or O2 gas at 800?°C proceeded thermodynamically over the Co or Ni metal catalyst in the cathode of the porous GDC cell. Faraday's law controlled the dry reforming rate of the biogas at 600?°C in cell No. 2. This paper also clarifies the influence of carbon deposition, which originates from CH4 pyrolysis (CH4 → C + 2H2) and disproportionation of CO gas (2CO → C + CO2), on the cell performance during dry reforming. The dry reforming of a biogas with O2 molecules from air exhibits high durability because of the oxidation of the deposited carbon by supplied air.  相似文献   

18.
E.G.M. Kuijpers  J.W. Geus 《Fuel》1983,62(2):158-161
The deposition of carbon from CH4 and CO on NiSiO2 catalysts was studied in pulse-flow experiments as well as volumetrically with a low-field magnetic permeameter. It was found that carbon, deposited from CH4 according to: CH4C + 4H, gave rise to the formation of nickel carbide, Ni3C, only at the surface of the nickel particles (T< 300 °C). However, carbon, deposited from CO according to: 2COC + CO2, led to the formation of a bulk nickel carbide as well as dissolution of carbon interstitially. The reactivity of the carbon thus deposited was studied with both H2 and H2O. The rate of reaction with hydrogen appeared to be a function of temperature: the rate passed through a maximum at 200 °C and dropped steeply above 300 °C. The only product of the reaction was CH4. The reaction with H2O produced besides CH4, CO2 and (at low carbon surface coverages) H2.  相似文献   

19.
Chars produced from locally grown jack pine have been gasified at atmospheric pressure with temperatures up to 650°C in a flow reactor. The gases produced were CO, CO2, CH4 and H2 as well as H2 O. Above the char preparation temperature, 350°C, the yields of gaseous products increased with temperature until 550?600°C when the production of CH4, CO and H2 O decreased. Chars modified by the separate inclusion of 1% w/w sodium borate, sodium phosphate and nickel oxide produced changes in the product distribution; an effect which was also studied during the addition of steam to the gasification cycles. Gross calorific values of the chars and allied materials were determined in an adiabatic bomb calorimeter and residues were analysed for C, H and N contents.  相似文献   

20.
The high level of gas permeability can effectively reduce the explosive spalling risk of refractory castables. The hydratable magnesium carboxylate (HMC) is expected to improve the permeability of castables owing to the thermal decomposition of the HMC hydrates. This study compared the gas permeability and explosive spalling resistance of HMC bonded refractory castables (HMCC) with calcium aluminate cement bonded refractory castables (CACC). Thermal decomposition of (Mg3(C6H5O7)2∙11H2O) (hydrates of HMC), drying behavior, and the pores size distribution of castables were investigated. The level of gas permeability of HMCC is higher than that of CACC, which was confirmed by the higher values of Darcian k1 and non-Darcian k2. The degas temperatures of HMC hydrates (156°C) and HMCC (432°C) are lower than those of CAC hydrates (289°C) and CACC (536°C) at a heating rate of 20°C/min, respectively. The large-size and more permeable pores in HMCC were obtained according to the mercury intrusion porosimeter (MIP) results, which formed the connected paths for gases (H2O, CO2, C2H4, CO, CH4) released from the castables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号