首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Exploring and designing efficient non-noble catalysts formed by element doping and nanostructure modification for the hydrogen evolution reaction (HER) is of critical importance with respect to sustainable resources. Herein, we have prepared a three-dimensional binary NiCo phosphide with hierarchical architecture (HA) composed of NiCoP nanosheets and nanowires grown on carbon cloth (CC) via a facile hydrothermal method followed by oxidation and phosphorization. Due to its unique hierarchical nanostructure, the NiCoP HA/CC electrocatalyst exhibits excellent performance and good working stability for the HER in both acidic and alkaline conditions. The obtained NiCoP HA/CC shows excellent HER activity with a low potential of 74 and 89 mV at 10 mA cm−2, a small Tafel slope of 77.2 and 99.8 mV dec−1 and long-term stability up to 24 h in acidic and alkaline electrolyte, respectively. NiCoP HA/CC, a non-noble metal material, is a promising electrocatalyst to replace noble metal-based electrocatalysts for the HER.  相似文献   

2.
Highly efficient and durable non-noble metal-based hydrogen evolution electrocatalysts are critical to advance the production of hydrogen energy via alkaline water electrolysis. Herein, we prepared a novel TiO2@WS2 hybrid via a facile and scalable two-step hydrothermal strategy combined with selective etching. Benefited from acid-etched TiO2 nanobelts with rough surface as substrate, ultrathin WS2 nanosheets nucleated and vertically grew into few layers in the confined configuration with more exposed active edges. Furthermore, the partial incorporation of oxygen in WS2 inherited from the remaining O–W bonds of tungsten precursor enhanced the electrical conductivity of the hybrid. Therefore, TiO2@WS2 hybrid was proved to be efficient and durable electrocatalyst for hydrogen evolution in alkaline medium. Upon optimal conditions, the hybrid only required a small onset overpotential of 95 mV and a low overpotential of 142 mV at 10 mA cm−2, superior to pristine WS2 and TiO2. In addition, better cycling stability during the alkaline HER process was also obtained, indicating its capability in future practical application. The synthesis strategy presents a cost-effective approach to produce efficient WS2-based HER electrocatalyst for electrochemical water splitting.  相似文献   

3.
Using cost-effective materials to replace precious Pt-based hydrogen evolution reaction (HER) catalysts holds great foreground for energy saving and environmental protection. In this work, we successfully prepared an urchin-like Co0.8-Mn0.2-P nanowires array supported on carbon cloth (CC) through a hydrothermal-phosphatization strategy and we also systematically studied its electrocatalytic HER performance. Electrochemical tests demonstrate that our urchin-like Co0.8-Mn0.2-P/CC possesses outstanding HER activity in acidic and alkaline media. In 0.5 M H2SO4, this urchin-like Co0.8-Mn0.2-P/CC only requires an overpotential of 55 mV to drive a current density of 10 mA cm−2, with the Tafel slope of 55.9 mV dec−1. Similarly, when reaching the same current density, just a particularly low overpotential of 61 mV is required with a corresponding Tafel slope of 41.7 mV dec−1 in 1 M KOH. Furthermore, this electrocatalyst exhibits superior stability with 1000 cycles of cyclic voltammetry and 24 h in the I-T test. Such excellent HER catalytic performance can be attributed to the synergistic effect between Co and Mn atoms and high electrochemical active surface area (ECSA). Our work provides a valuable synthesis strategy of non-precious and high HER performance catalytic material.  相似文献   

4.
We report a self-supporting electrode fabricated by covering iron doped mesoporous cobalt phosphide film on carbon cloth substrate (meso-FexCo1-xP/CC) for hydrogen evolution reaction (HER). In acidic and alkaline electrolytes, the electrode exhibited excellent catalytic activity and fast kinetics towards the HER, only requiring small overpotentials of 61 mV and 67 mV to drive 10 mA cm?2, respectively. The superior electrocatalytic activity is attributed to the mesoporous structure with high specific surface area (147.5 m2 g?1) and doping of Fe atom. The mesoporous structure grown on the conductive carbon cloth substrate enables the fully exposure of active sites and the rapid penetration of electrolyte. Additionally, density functional theory (DFT) calculation reveals that the doping of Fe enhances the adsorption of H atoms by shifting the d-band center of Co. Meanwhile, the introduction of Fe lowers the energy barrier for water dissociation, which accelerates the catalytic kinetics in alkaline electrolyte.  相似文献   

5.
The non-precious transition metal phosphides (TMPs) as robust and effective hydrogen evolution reaction (HER) catalysts have attracted enormous attention, due to the merits of earth-abundance, low price, desirable stability and high efficiency. However, the conventional preparation process of this kind of catalyst is inconvenient. Herein, we report a facile approach toward the fabrication of nickel phosphide (Ni2P) assembled on carbon cloth (CC) via the coupling method of electroless plating and low temperature phosphorization. Then, the crystallinity, morphology and chemical component of fabricated self-supporting Ni2P/CC catalyst employed for the HER process were characterized, and the HER property was successively evaluated in three types of electrolytes (i.e., acidic, neutral and alkaline solutions). The as-prepared Ni2P/CC catalyst displays a remarkable HER performance, which can be corroborated by the small Tafel slope (b = 50 mV dec−1), high exchange current density (j0 = 6.6 × 10−2 mA cm−2), acceptable overpotential (119 mV) to attain the current density of 10 mA cm−2, as well as the superb stability (<5% decay after 24 h potentiostatic test) in 0.5 M H2SO4. In addition, it should be noted that the HER process of Ni2P/CC catalyst can be competent for the reduction of nitrate from the solution, and an efficiency of 63.2% for this nutrient pollutant is achieved.  相似文献   

6.
Developing efficient, non-noble electrocatalysts toward hydrogen evolution reaction (HER) in alkaline electrolytes is of important significance for future energy supplement but still a challenge. Recently, pyrite-type NiSe2 nanomaterial has been considered as an idea HER electrocatalyst due to its high conductivity, strong corrosion resistance and low cost. However, the HER performance of NiSe2 in alkaline electrolytes is still unsatisfactory, which is possibly limited to the activate water dissociation in alkaline media. Herein, a novel hybrid electrocatalyst of Ni(OH)2/NiSe2 nanosheet arrays on carbon cloth (Ni(OH)2/NiSe2/CC) is fabricated, exhibiting excellent HER catalytic activity with a low overpotential of 82 mV to drive a current density of 10 mAcm−2 as well as maintaining a long-term durability for 12 h in 1.0 M KOH, which is 77 mV less than that of NiSe2/CC and superior to most recently reported non-noble HER electrocatalysts. In addition, the Tafel slope of Ni(OH)2/NiSe2/CC (60 mV dec −1) is also much smaller than that of NiSe2/CC (112 mV dec −1), suggesting a promotion kinetics of HER process for Ni(OH)2/NiSe2/CC. Our further experimental results show that the significantly improved activity of Ni(OH)2/NiSe2/CC electrode should ascribe to its enlarged active surface, good conductivity and interfacial synergy between Ni(OH)2 and NiSe2. The synergetic strategy may provide an efficient way to promote the HER activity of other non-noble transition metal selenides in alkaline electrolyte.  相似文献   

7.
Tungsten carbides (W2C and WC) materials, as promising non-precious electrocatalysts, possess highly efficient activity for HER. Herein, N-doped graphene supported tungsten carbide (N–W2C/WC) nanocomposite is synthesized by spray drying process followed with a two-step pyrolysis treatment, which exhibits a remarkable hydrogen evolution reaction (HER) activity and excellent stability in acidic solution and alkaline solution. N–W2C/WC displays low overpotentials of 166 mV and 125 mV to achieve a current density of 10 mA cm?2 and small Tafel slopes of 60.97 and 62.66 mV dec?1 in 0.5 M H2SO4 and 1.0 M KOH, respectively. After 1000 cycles, the electrocatalytic activity of N–W2C/WC is almost no change in acidic media but slightly decreases in alkaline media. This work might provide a new way to explore high comprehensive performance tungsten-based electrocatalyst for HER.  相似文献   

8.
Developing high-efficiency electrocatalysts viable for pH-universal hydrogen evolution reaction (HER) has attracted great interest because hydrogen is a promising renewable energy carrier for replacing fossil fuels. Herein, we present a facile strategy for fabricating ultra-fine Ru nanoparticles (NPs) decorated V2O3 on the carbon cloth substrates as efficient and stable pH-universal catalysts for HER. Benefiting from the metallic property and electronic conductivity of V2O3 matrix, the optimized hybrid (Ru/V2O3-CC) exhibits excellent HER activities in a wide pH range, achieving lower overpotentials of 184, 219, and 221 mV at 100 mA cm−2 in 0.5 M H2SO4, 1.0 M KOH and 1.0 M phosphate-buffered saline, respectively. Moreover, the electrode remains superior stability with negligible degradation after 5000 cyclic voltammetry scanning whether in acidic, alkaline or neutral media. Experimental results, combined with theoretical calculations, demonstrate that the interaction between Ru NPs and the support V2O3 induces the local electronic density diversity, allowing optimization of the adsorption energy of Ru towards hydrogen intermediate H1, thus favoring the HER process.  相似文献   

9.
Mo2C, which has a unique electronic structure similar to the electronic structure of Pt, is considered as the material with the greatest potential to replace Pt as a catalyst for the electrocatalytic hydrogen evolution reaction (HER). However, Mo2C thin films have not attracted enough attention in the field of electrocatalysis. This work proposes a method for preparing Mo2C thin films as a catalyst for electrocatalytic HER through radiofrequency magnetron sputtering. The HER activity of the Mo2C thin film in acidic and alkaline media is studied by changing the deposition power of the Mo2C target and doping Ni for structural modification. Results show that increasing the deposition power of Mo2C can significantly enhance the HER activity of the films in acidic and alkaline media, and metal Ni doping can further enhance the HER activity of the Mo2C films. In an alkaline environment at a current density of 10 mA cm−2, the films demonstrate an overpotential of as low as 163 mV with a Tafel slope of 107 mV·dec−1. In acidic media, the films present the corresponding overpotential of 201 mV and a Tafel slope of as low as 96 mV·dec−1. Moreover, the Ni-doped Mo2C films have excellent HER stability. The synergy between doped Ni and Mo vacancies optimizes the strength of the Mo–H bond and the adsorption and desorption equilibrium of active H, thus enhancing HER kinetics. This work guides the possible structural design of Mo2C thin films for electrocatalytic HER.  相似文献   

10.
Pt-group metal phosphides are widely utilized as efficient electrocatalysts for hydrogen evolution reaction (HER), whereas most of the synthetic strategies are complicated, dangerous, and toxic with the use of large amount of nitrogen (N) and/or phosphorus (P) sources. Here, we report the synthesis of ruthenium phosphide nanoparticles (NPs) confined into N/P dual-doped carbon by pyrolyzing self-prepared ruthenium-organophosphine complex using 1,3,5-triaza-7-phosphadamantane (PTA) as the ligand and N/P sources. The achieved S–RuP2/NPC displayed excellent electrocatalytic activity (overpotentials of 19, 37, and 49 mV in alkaline, neutral, and acidic media, respectively, at 10 mA cm−2) toward HER at all pH ranges. The high performance of S–RuP2/NPC must be ascribed to the homogeneously distributed and P-rich RuP2 NPs with the diameter of 3.29 nm on the NPC surface, which can considerably improve the atom utilization for HER. The present synthetic strategy not only avoids the use of additional N/P sources but also the generation of flammable and toxic PH3 gas. This synthetic strategy can be extended to prepare other traditional metal phosphides for electrocatalytic applications.  相似文献   

11.
Pt group metals display lower HER activity in alkaline solution than in acidic solution, because they are inefficient in the water dissociation step (Volmer step). Compared with Pt, the activity difference of Rh in alkaline and acidic media is much smaller. Meanwhile, Ni(OH)2 is proved to be an effective catalyst for water dissociation. Therefore, Rh–Ni(OH)2/C nanocomposites with different Rh:Ni(OH)2 ratios were synthesized by a co-deposition/partial reduction method, and their microstructures as well as electrocatalytic properties were studied. The results show that Rh and Ni(OH)2 display synergistic effect in Rh–Ni(OH)2/C nanocomposites. The Rh–Ni(OH)2/C nanocomposite with a molar ratio of Rh to Ni(OH)2 of 1:1 exhibits the highest activity. It shows an overpotential of 36 mV at 10 mA cm?2 and a Tafel slope of 32 mV dec?1 for HER in alkaline media, which is superior to commercial Pt/C. In addition, the Rh–Ni(OH)2/C (1:1) nanocomposite shows excellent durability in alkaline media as well.  相似文献   

12.
The development of cost-effective, highly efficient and stable electrocatalysts for alkaline water electrolysis at a large current density has attracted considerable attention. Herein, we reported a one-dimensional (1D) porous Mo2C/Mo2N heterostructured electrocatalyst on carbon cloth as robust electrode for large current hydrogen evolution reaction (HER). The MoO3 nanobelt arrays and urea were used as the metal and non-metal sources to fabricate the electrocatalyst by one-step thermal reaction. Due to the in-situ formed abundant high active interfaces and porous structure, the Mo2C/Mo2N electrocatalyst shows enhanced HER activity and kinetics, as exemplified by low overpotentials of 54, 73, and 96 mV at a current density of 10 mA cm?2 and small Tafel slopes of 48, 59 and 60 mV dec?1 in alkaline, neutral and acid media, respectively. Furthermore, the optimal Mo2C/Mo2N catalyst only requires a low overpotential of 290 mV to reach a large current density of 500 mA cm?2 in alkaline media, which is superior to commercial Pt/C catalyst (368 mV) and better than those of recently reported Mo-based electrocatalysts. This work paves a facile strategy to construct highly efficient and low-cost electrocatalyst for water splitting, which could be extended to fabricate other heterostructured electrocatalyst for electrocatalysis and energy conversion.  相似文献   

13.
The development of highly active and stable electrocatalysts is essential to solve energy and environmental problems and realize sustainable social and economic development. Herein, we synthesized a bimetallic sulfide material by a kinetically controlled low-temperature solid-phase reaction. The bimetallic sulfide improves the conductivity of the electrocatalysts by optimized electronic structure, and the coupling effect at the heterogeneous interface of WS2 and NiSx increases the charge density on the S site at W–S–Ni, making it easier for the electrocatalysts to trap the active material in solution. In addition, nanosheet clusters expose abundant catalytic sites, which together improve hydrogen evolution reaction (HER) for catalytic activity. Optimized WS2/NiSx composite show near-precious metal catalyst activity with an overpotential at 10 mA cm?2 of only 72 mV in alkaline media, which exhibits excellent catalytic stability and outperforms most non-precious metal electrocatalysts.  相似文献   

14.
A molten salt strategy was proposed to prepare a series of electrocatalysts for hydrogen evolution reaction (HER) with salts as templates, which consisted of Co9S8 nanoparticles (NPs) and N, S co-doped mesoporous carbons. The porosities, heteroatoms contents, and crystalline structures of the final electrocatalysts were determined by the types of salts and the calcining temperatures. When KCl/NaCl, KCl/LiCl, and NaCl/CaCl2 were adopted as the molten salts, Co9S8 NPs embedded, N, S co-doped carbons were obtained. However, when CaCl2 and ZnCl2 were used as the molten salts, Co9S8 could not be synthesized. The characterization results exhibited that alkali metal atoms could be introduced in the lattices of Co9S8. The combination of experimental and theoretical results revealed that Na and K atoms doping improved the electrocatalytic performance for HER. GTCo900-KCl/NaCl possessed the best HER activity, delivering a current density of 10 mA cm−2 at 54 mV in acidic media, 142 mV in neutral media, and 103 mV in alkaline media.  相似文献   

15.
Using low-cost nonprecious metals to replace Pt as hydrogen evolution reaction (HER) electrocatalyst is promising, but still limited by their efficiency and stability. Herein, with low-cost dicyandiamide and metal salts as precursor, FeCo alloy nanoparticles encapsulated in nitrogenated carbon nanotubes (FeCo-NCNTs) were facially synthesized as efficient HER electrocatalyst. Addition of iron as second element, though not facilitating the formation of carbon nanotube, was utilized to improve the physicochemical properties of metals. Via optimizing the atomic molar ratios of Fe/Co nanoparticles, the optimal Fe0.4Co0.6-NCNTs with thin carbon shell (c.a. 5–10 layer) and equally distribution of embedded alloy nanoparticles was found with outstanding HER activity. To achieve a current density of 10 mA cm−2, only overpotential of 50 mV, 157 mV and 202 mV were needed in acidic (0.5 M H2SO4), alkaline (1 M KOH), and neutral solutions. Its higher electrochemically active surface areas and lower electron transfer resistance may contribute to the excellent electrocatalytic HER. Furthermore, the illustrated current density slightly changed over 20 h, suggesting excellent stability. Hence, the present method provides cost-effective, high efficiency, and stable materials in developing the sustainable energy conversion systems.  相似文献   

16.
The mixed metal dichalcogenides combination of WS2–MoS2 was coated onto Cu substrate by electroless NiMoP plating technique and the electrocatalytic hydrogen evolution reaction (HER) performance was investigated. The enhanced structural, morphological parameters and boosted electrocatalytic performance of the various metal-metal molar ratio of WS2–MoS2 onto NiMoP plate were identified under variable operating conditions and it was successfully evaluated by various characterization techniques. The well-defined crystalline nature, phase, particle size, structure, elemental analysis and surface morphology of prepared coatings were analyzed by FESEM, XRD, AFM and EDS mapping. The electrochemical analysis was performed using open circuit potential (OCP) analysis, chronoamperometry (CA), electrochemical impedance spectroscopy (EIS), Tafel curves, linear sweep voltammetry (LSV), cyclic voltammetry (CV) and polarization studies to find the activity of prepared electrocatalyst towards electrochemical hydrogen evolution reactions. The performance of bare NiMoP and WS2–MoS2/NiMoP plates were compared and found that the HER activity of NiMoP can be reinforced by composite incorporation through the synergic effect arises with in the catalytic system, which improves surface roughness and enhances the magnitude of electrocatalyst toward HER. The achievement of enhanced catalytic performance of coatings was authenticate by the kinetic parameters such as decreases in Tafel slope (98 mV dec?1), enhanced exchange current densities (9.32 × 10?4 A cm?2), and a lower overpotential. The consistent performance and durability of the catalyst were also investigated. The enhanced electrocatalytic activity of WS2–MoS2/NiMoP coatings increased with respect to the surface-active sites associated with combination of mixed dichalcogenides and the synergic effect arises in between different components present in the coating system. This work envisages the progressive strategies for the economical exploration of a novel WS2–MoS2/NiMoP water splitting catalyst used for large scale H2 generation. The prepared WS2–MoS2/NiMoP embedded Cu substrate possess high catalytic activity due to its least overpotential of 101 mV at a benchmark current density of 10 mA cm?2, which demonstrated the sustainable, efficient and promising electrocatalytic property of prepared catalyst towards HER under alkaline conditions.  相似文献   

17.
Designing porous active materials and enhancing their contact with conductive substrates is an effective strategy to improve electrolytic water splitting performance of noble metal-free catalysts. Herein, a facile nanostructured electrode, composed of porous Co2P films coated on carbon fiber (CF@P–Co2P), is designed and prepared. The unique three-dimensional interconnected pore structure of Co2P and the close contact between porous Co2P and CF not only increase specific surface areas to expose abundant catalytic sites but also stimulate the transport of electron, mass and gaseous products in catalytic process. Benefit from the reasonable electrode structure, the self-supported CF@P–Co2P electrodes present perfect performance with only needing overpotentials of 107.7/175.5/141.8 mV for hydrogen evolution reaction (HER) in acidic/neutral/alkaline solution and 269.4 mV for oxygen evolution reaction (OER) in alkaline solution to get current density of 20 mA cm?2. In addition, alkaline electrolyzer equipped with CF@P–Co2P bifunctional electrodes only needs a cell voltage of 1.657 V to get water-splitting current density of 20 mA cm?2. Even better, the electrolyzer can continuously electrolyze over 50 h with negligibly decreasing current density and the Faraday efficiency is close to 100% toward both HER and OER.  相似文献   

18.
Transition metal dichalcogenides (TMDs) have attracted significant research interest due to its promising performance in hydrogen evolution reaction (HER). Synergistic effect between materials interface can improve the electrocatalytic properties. In this work, the WS2–CoS2 heterostructure supported on carbon paper (CP) was elaborately fabricated by a three-step method. Owing to the synergistic effect, WS2–CoS2 heterostructure exhibits an excellent electrocatalytic activity with a low overpotential of 245 mV at 100 mA/cm2 and a small Tafel slope of 270 mV/dec toward HER. We demonstrate that the increased specific surface area and conductivity of the heterostructure play a key role in enhancing the overall catalytic efficiency. Moreover, the crystal lattice distortion in the heterostructure could induce charge redistribution and improve electron transfer efficiency, which may also benefit the whole HER activity.  相似文献   

19.
For the sake of sustainable development, water splitting without other pollutants has been a candidate technology in green energy. Due to the low efficiency of water splitting, innovative breakthroughs are desirable to improve efficiency significantly. Nowadays, the rational design of non-precious metal-based robust bifunctional catalysts is considered to be a feasible way to promote both the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). Herein, we proposed a vanadium doped CoP nanorods array catalyst grown on carbon cloth (V–CoP NRs/CC) as a bifunctional electrode material. When V–CoP NRs/CC employed as both anode and cathode materials, it only demands low cell voltages of 1.491 V and 1.606 V to drive a current density of 10 mA cm?2 (j10) and 50 mA cm?2 (j50) in 1 M KOH alkaline electrolyte. Especially, V–CoP NRs/CC can maintain its outstanding electrocatalytic performance for more than 40 h at j50 in overall water splitting.  相似文献   

20.
Electrochemical water splitting technique requires high-efficient bifunctional electrocatalysts to obtain large-scale hydrogen production for resolving the impending energy and environmental crisis. Herein, hierarchical flower-like CoS2-MoS2 heterostructure hybrid spheres grown on carbon cloth (CoS2-MoS2/CC) were prepared by sulfuring wheel-shaped polyoxometalate {Co20Mo16}. The as-prepared CoS2-MoS2/CC as bifunctional electrocatalyst manifests excellent alkaline oxygen evolution and hydrogen evolution activities with low overpotentials of 240 mV for OER and 60 mV for HER at 10 mA cm?2, respectively. When assembled as two-electrode cell, CoS2-MoS2/CC delivers an extremely low cell-voltage of 1.52 V at 10 mA cm?2 accompanied with remarkable long-term durability. Additionally, CoS2-MoS2/CC exhibits favorable overall-water-splitting performance in simulated seawater. The superior performance of CoS2-MoS2/CC should be ascribed to the optimized intrinsic electron structure via electron transfer from MoS2 to CoS2 along with the synergistic effect of well-exposed heterostructure interfaces and favorable diffusion channels. This work offers a practical strategy for exploring high-efficient bifunctional electrocatalysts for overall water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号