首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present firstly the different hybrid systems with fuel cell. Then, the study is given with a hybrid fuel cell–photovoltaic generator. The role of this system is the production of electricity without interruption in remote areas. It consists generally of a photovoltaic generator (PV), an alkaline water electrolyzer, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to manage the system operation of the hybrid system. Different topologies are competing for an optimal design of the hybrid photovoltaic–electrolyzer–fuel cell system. The studied system is proposed. PV subsystem work as a primary source, converting solar irradiation into electricity that is given to a DC bus. The second working subsystem is the electrolyzer which produces hydrogen and oxygen from water as a result of an electrochemical process. When there is an excess of solar generation available, the electrolyzer is turned on to begin producing hydrogen which is sent to a storage tank. The produced hydrogen is used by the third working subsystem (the fuel cell stack) which produces electrical energy to supply the DC bus. The modelisation of the global system is given and the obtained results are presented and discussed.  相似文献   

2.
This paper investigates the performance of a high temperature Polymer Electrolyte Membrane (PEM) electrolyzer integrated with concentrating solar power (CSP) plant and thermal energy storage (TES) to produce hydrogen and electricity, concurrently. A finite-time-thermodynamic analysis is conducted to evaluate the performance of a PEM system integrated with a Rankine cycle based on the concept of exergy. The effects of solar intensity, electrolyzer current density and working temperature on the performance of the overall system are identified. A TES subsystem is utilized to facilitate continuous generation of hydrogen and electricity. The hydrogen and electricity generation efficiency and the exergy efficiency of the integrated system are 20.1% and 41.25%, respectively. When TES system supplies the required energy, the overall energy and exergy efficiencies decrease to 23.1% and 45%, respectively. The integration of PEM electrolyzer enhances the exergy efficiency of the Rankine cycle, considerably. However, it causes almost 5% exergy destruction in the integrated system due to conversion of electrical energy to hydrogen energy. Also, it is concluded that increase of working pressure and membrane thickness leads to higher cell voltage and lower electrolyzer efficiency. The results indicate that the integrated system is a promising technology to enhance the performance of concentrating solar power plants.  相似文献   

3.
In the present study, an innovative multigeneration plant for hydrogen and ammonia generation based on solar and biomass power sources is suggested. The proposed integrated system is designed with the integration of different subsystems that enable different useful products such as power and hydrogen to be obtained. Performance evaluation of designed plant is carried out using different techniques. The energetic and exergetic analyses are applied to investigate and model the integrated plant. The plant consists of the parabolic dish collector, biomass gasifier, PEM electrolyzer and hydrogen compressor unit, ammonia reactor and ammonia storage tank unit, Rankine cycle, ORC cycle, ejector cooling unit, dryer unit and hot water production unit. The biomass gasifier unit is operated to convert biomass to synthesis gaseous, and the concentrating solar power plant is utilized to harness the free solar power. In the proposed plant, the electricity is obtained by using the gas, Rankine and ORC turbines. Additionally, the plant generates compressed hydrogen, ammonia, cooling effect and hot water with a PEM electrolyzer and compressed plant, ammonia reactor, ejector process and clean-water heater, respectively. The plant total electrical energy output is calculated as 20,125 kW, while the plant energetic and exergetic effectiveness are 58.76% and 55.64%. Furthermore, the hydrogen and ammonia generation are found to be 0.0855 kg/s and 0.3336 kg/s.  相似文献   

4.
In this study, power and hydrogen production performance of an integrated system is investigated. The system consists of an organic Rankine cycle (ORC), parabolic trough solar collectors (PTSCs) having a surface area of 545 m2, middle-grade geothermal source (MGGS), cooling tower and proton exchange membrane (PEM). The final product of this system is hydrogen that produced via PEM. For this purpose, the fluid temperature of the geothermal source is upgraded by the solar collectors to drive the ORC. To improve the electricity generation efficiency, four working fluids namely n-butane, n-pentane, n-hexane, and cyclohexane are tried in the ORC. The mass flow rate of each working fluid is set as 0.1, 0.2, 0.3, 0.4 kg/s and calculations are made for 16 different situations (four types of working fluids and four different mass flow rates for each). As a result, n-butane with a mass flow rate of 0.4 kg/s is found to be the best option. The average electricity generation is 66.02 kW between the hours of 1100-1300. The total hydrogen production is 9807.1 g for a day. The energy and exergy efficiency is calculated to be 5.85% and 8.27%, respectively.  相似文献   

5.
Energy and exergy analyses of an integrated system based on anaerobic digestion (AD) of sewage sludge from wastewater treatment plant (WWTP) for multi-generation are investigated in this study. The multigeneration system is operated by the biogas produced from digestion process. The useful outputs of this system are power, freshwater, heat, and hydrogen while there are some heat recoveries within the system for improving efficiency. An open-air Brayton cycle, as well as organic Rankine cycle (ORC) with R-245fa as working fluid, are employed for power generation. Also, desalination is performed using the waste heat of power generation unit through a parallel/cross multi-effect desalination (MED) system for water purification. Moreover, a proton exchange membrane (PEM) electrolyzer is used for electrochemical hydrogen production option in the case of excess electricity generation. The heating process is performed via the rejected heat of the ORC's working fluid. The production rates for products including the power, freshwater, hydrogen, and hot water are obtained as 1102 kW, 0.94 kg/s, 0.347 kg/h, and 1.82 kg/s, respectively, in the base case conditions. Besides, the overall energy and exergy efficiencies of 63.6% and 40% are obtained for the developed system, respectively.  相似文献   

6.
Renewable energy sources such as wind turbines and solar photovoltaic are energy sources that cannot generate continuous electric power. The seasonal storage of solar or wind energy in the form of hydrogen can provide the basis for a completely renewable energy system. In this way, water electrolysis is a convenient method for converting electrical energy into a chemical form. The power required for hydrogen generation can be supplied through a photovoltaic array. Hydrogen can be stored as metal hydrides and can be converted back into electricity using a fuel cell. The elements of these systems, i.e. the photovoltaic array, electrolyzer, fuel cell and hydrogen storage system in the form of metal hydrides, need a control and monitoring system for optimal operation. This work has been performed within a Research and Development contract on Hydrogen Production granted by Solar Iniciativas Tecnológicas, S.L. (SITEC), to the Politechnic University of Valencia and to the AIJU, and deals with the development of a system to control and monitor the operation parameters of an electrolyzer and a metal hydride storage system that allow to get a continuous production of hydrogen.  相似文献   

7.
In today, the basic necessity for the economic and social development of countries is to have a cheap, reliable, sustainable, and environmentally friendly energy source. For this reason, renewable energy sources stand out as the most important key. Solar energy-based multi-energy generation systems are one of the most important options among the current scenarios to prevent global warming. In this presented study, electricity and hydrogen production from a solar collector with medium temperature density is investigated. In this system, 34 pipes evacuated tube solar collector (ETSC) is used for thermal energy generation, organic Rankine cycle (ORC) for electricity generation, and Proton exchanger membrane electrolyzer (PEMe) for hydrogen production. In addition, the energy and exergy efficiencies of the whole system calculated as 51.82% and 16.30%, respectively. Moreover, the amount of hydrogen obtained in PEM is measured as 0.00527 kg/s.  相似文献   

8.
In this article, the solar hydrogen storage is modeled and hourly investigated with TRNSYS software. The Photovoltaic (PV) panel is employed for green power generation that is consumed in the electrolyzer subsystem and produced hydrogen. Additionally, the required electricity at the lack of enough solar irradiation is supplied from the grid. The performance of the system is comparatively analyzed for three main cities. Results show that the maximum power generation by PV panel is about 1670 kW in June which approximately is the same for two cities. The energy and Faraday efficiency of electrolyzer changes between 0.85-0.89 and 0.89–0.92 respectively. The amount of hydrogen production reaches 1235 m3/h for one of them in May. The total amount of hydrogen production is 13,181 m3/year in Yazd, 13,143 m3/year in hot city, and 13,141 m3/year in most populated city.  相似文献   

9.
Experimental results for hydrogen storage tanks with metal hydrides used for load leveling of electricity in commercial buildings are described. Variability in electricity demand due to air conditioning of commercial buildings necessitates installation of on-site energy storage. Here, we propose a totalized hydrogen energy utilization system (THEUS) as an on-site energy storage system, present feasibility test results for this system with a metal hydride tank, and discuss the energy efficiency of the system. This system uses a water electrolyzer to store electricity energy via hydrogen at night and uses fuel cells to generate power during the day. The system also utilizes the cold heat of reaction heat during the hydrogen desorption process for air conditioning. The storage tank has a shell-like structure and tube heat exchangers and contains 50 kg of metal hydride. Experimental conditions were specifically designed to regulate the pressure and temperature range. Absorption and desorption of 5,400 NL of hydrogen was successfully attained when the absorption rate was 10 NL/min and desorption rate was 6.9 NL/min. A 24-h cycle experiment emulating hydrogen generation at night and power generation during the day revealed that the system achieved a ratio of recovered thermal energy to the entire reaction heat of the hydrogen storage system of 43.2% without heat loss.  相似文献   

10.
Hydrogen is one of the most clean energy carrier and the best alternative for fossil fuels. In this study, thermodynamic analysis of modified Organic Rankine Cycle (ORC) integrated with Parabolic Trough Collector (PTC) for hydrogen production is investigated. The integrated system investigated in this study consists of a parabolic trough collector, a modified ORC, a single effect absorption cooling system and a PEM electrolyzer. By using parabolic trough collector, solar energy is converted heat energy and then produced heat energy is used in modified ORC to produce electricity. Electricity is then used for hydrogen production. The outputs of this integrated system are electricity, cooling and hydrogen. By performing a parametric study, the effects of design parameters of PTC, modified ORC and PEM electrolyzer on hydrogen production is evaluated. According to the analysis results, solar radiation is one of the most important factor affecting system exergy efficiency and hydrogen production rate. As solar radiation increases from 400?W/m2 to 1000?W/m2, exergy efficiency of the system increases 58%–64% and hydrogen production rate increases from 0.1016?kg/h to 0.1028?kg/h.  相似文献   

11.
This study investigates a novel solar-driven energy system for co-generating power, hydrogen, oxygen, and hot water. In the proposed system, parabolic trough collectors (PTCs) are used as the heat source of cascaded power cycles, i.e., steam and organic Rankine cycles (SRC and ORC). While the electricity produced by the SRC is supplied to the grid, the energy output of the ORC is used to drive an electrolyzer for hydrogen production. In addition, the use of a thermoelectric generator (TEG) using heat rejected from the ORC condenser for supplying additional electricity to the electrolyzer is investigated. A multi-objective optimization based on the genetic algorithm approach is carried out to estimate the optimal results for the proposed system. The specific cost of the system product and exergy efficiency are the chosen objective parameters to be minimized and maximized, respectively. The results show that, for the optimal system with the TEG, the specific cost of the system product and the exergy efficiency are 30.2$/GJ and 21.9%, respectively, and the produced hydrogen rate is 2.906 kg/h. The results also show that using a TEG increases efficiency and reduces the specific cost of system product. For having the most realistic interpretation of the investigations, the performance of the proposed system is investigated for four cities in Khuzestan province in Iran.  相似文献   

12.
Two procedures are analyzed to control the flow of hydrogen produced by an electrolyzer in a plant connected to a distributed electricity grid. The general idea of both procedures is to approximate the consumption power of the electrolyzer to the tracked hourly mean useful power of a wind generation system. The first technique uses a perceptron to predict hourly wind-speed values as the basis for the power consumption of the electrolyzer. The second approximates the hourly consumption of the electrolyzer to the useful power of the wind generation system over the previous hour. Calculations have shown that the control procedure, using either one of these two techniques, leads to substantial improvements in the main parameters of the plant, compared to an installation in which electrolyzer consumption is constant. In particular, the number of batteries in the accumulation system may be reduced. Moreover, considering the possibility that the hydrogen production plant might supply electricity to the external electricity grid, various objectives for operational optimization of the installation are analyzed. A function that defines the joint exploitation of the wind energy by the electrolyzer and the external electricity grid is introduced and then, by using that function, an optimal operating regime for the plant is determined.  相似文献   

13.
Cold energy during the LNG regasification process is usually applied for power generation, but the electricity demand varies with the time. Therefore, a thought that transforming electrical energy into hydrogen energy by PEM electrolyzer is put forward to adjust the adaptability of power output to electricity demand. This paper proposes a new double-pressure condensation Rankine cycle integrated with PEM electrolyzer for hydrogen production. In this system, seawater is used as the heat source, and binary mixed working fluids are applied. Meanwhile, multi-stream heat exchanger is introduced to improve the irreversibility of heat transfer between LNG and working fluid. The key system parameters, including seawater temperature, the first-stage condensation temperature, the second-stage condensation temperature, and outlet temperature of LNG, are studied to clarify their effects on net power generation, hydrogen production rate and energy efficiency. Furthermore, the hydrogen production rate is as the objective function, these parameters are optimized by genetic algorithm. Results show that seawater temperature has positive impact on the net power output and hydrogen production rate. The first-stage condensation temperature, the second-stage condensation temperature, and outlet temperature of LNG have diverse effects on the system performance. Under the optimal working conditions, when the LNG regasification pressure are 600, 2500, 3000 and 7000 kPa, the increasing rate for optimized net power output, hydrogen production rate and energy efficiency are more than 11.68%, 11.67% and 8.88%, respectively. The cost of hydrogen production with the proposed system varies from 1.93 $/kg H2 to 2.88 $/kg H2 when LNG regasification pressure changes from 600 kPa to 7000 kPa.  相似文献   

14.
Unlike steam and gas cycles, the Kalina cycle system can utilize low-grade heat to produce electricity with water-ammonia solution and other mixed working fluids with similar thermal properties. Concentrated photovoltaic thermal systems have proven to be a technology that can be used to maximize solar energy conversion and utilization. In this study, the integration of Kalina cycle with a concentrated photovoltaic thermal system for multigeneration and hydrogen production is investigated. The purpose of this research is to develop a system that can generate more electricity from a solar photovoltaic thermal/Kalina system hybridization while multigeneration and producing hydrogen. With this aim, two different system configurations are modeled and presented in this study to compare the performance of a concentrated photovoltaic thermal integrated multigeneration system with and without a Kalina system. The modeled systems will generate hot water, hydrogen, hot air, electricity, and cooling effect with photovoltaic cells, a Kalina cycle, a hot water tank, a proton exchange membrane electrolyzer, a single effect absorption system, and a hot air tank. The environmental benefit of two multigeneration systems modeled in terms of carbon emission reduction and fossil fuel savings is also studied. The energy and exergy efficiencies of the heliostat used in concentrating solar radiation onto the photovoltaic thermal system are 90% and 89.5% respectively, while the hydrogen production from the two multigeneration system configurations is 10.6 L/s. The concentrated photovoltaic thermal system has a 74% energy efficiency and 45.75% exergy efficiency, while the hot air production chamber has an 85% and 62.3% energy and exergy efficiencies, respectively. Results from this study showed that the overall energy efficiency of the multigeneration system increases from 68.73% to 70.08% with the integration of the Kalina system. Also, an additional 417 kW of electricity is produced with the integration of the Kalina system and this justifies the importance of the configuration. The production of hot air at the condensing stage of the photovoltaic thermal/Kalina hybrid system is integral to the overall performance of the system.  相似文献   

15.
There is an increasing need for new and greater sources of energy for future global transportation applications. One recognized possibility for a renewable, clean source of transportation fuels is solar radiation collected and converted into useable forms of electrical and/or chemical (hydrogen) energy. This paper describes methods for utilizing and combining existing technologies into systems that optimize solar energy collection and conversion into useful transportation fuels. Photovoltaic (PV)-electrolysis (solar hydrogen) and PV-battery charging systems described in this paper overcome inefficiencies inherent in past concepts, where DC power from the PV system was first converted to AC current and then used to power electrical devices at the point of generation, or fed back to the grid to reduce electricity costs. These past, non-optimized concepts included efficiency losses in power conversion and unnecessary costs. These drawbacks can be avoided by capitalizing on the unique feature of solar photovoltaic devices that match their maximum power point to the operating point of an electrolyzer or a battery charger without intervening power transformers. This concept is illustrated for two systems designed, built, and tested by General Motors for fueling a fuel cell electric vehicle and charging an automotive propulsion battery. Based on this research, we propose a scenario in which individual home-owners, businesses, or sites at remote locations with no grid electricity, can capture solar energy, store it as hydrogen generated via water electrolysis, or as electrical energy used to charge storage batteries. Such a decentralized energy system provides a home refueling option for drivers who only travel limited distances each day.  相似文献   

16.
Current research aims to develop, design, and analyze a novel solar-assisted multi-purpose energy generation system for hydrogen production, electricity generation, refrigeration, and hot water preparation. The suggested system comprises a solar dish for supplying the necessary heat demand, a re-compression carbon dioxide-based Brayton cycle, a PEM electrolyzer for hydrogen generation, an ejector refrigeration system working with ammonia, and a hot water preparation system. The first law and exergy analyses are implemented to determine the performance of the multi-generation plant with various outputs. Besides, the exergo-environmental evaluation of the plant is conducted for the environmental impacts of the plant. Furthermore, parametric analyses are executed for investigating the system outputs, exergy destruction rate, and system efficiencies. According to the results, the rate of hydrogen generated by means of the multi-generation power plant is determined to be 0.062 g/s which corresponds to an hourly production of 0.223 kg. Besides, with the utilization of the supercritical closed Brayton cycle, a power generation rate of 74.86 kW is achieved. Furthermore, the irreversibility of the overall plant is estimated as 535.7 kW in which the primary contributor of this amount is the solar system with a destruction rate of 365.5 kW.  相似文献   

17.
A new configuration of solar energy-driven integrated system for ammonia synthesis and power generation is proposed in this study. A detailed dynamic analysis is conducted on the designed system to investigate its performance under different radiation intensities. The solar heliostat field is integrated to generate steam that is provided to the steam Rankine cycle for power generation. The significant amount of power produced is fed to the PEM electrolyser for hydrogen production after covering the system requirements. A pressure swing adsorption system is integrated with the system that separates nitrogen from the air. The produced hydrogen and nitrogen are employed to the cascaded ammonia production system to establish increased fractional conversions. Numerous parametric studies are conducted to investigate the significant parameters namely; incoming beam irradiance, power production using steam Rankine cycle, hydrogen and ammonia production and power production using TEGs and ORC. The maximum hydrogen and ammonia production flowrates are revealed in June for 17th hour as 5.85 mol/s and 1.38 mol/s and the maximum energetic and exergetic efficiencies are depicted by the month of November as 25.4% and 28.6% respectively. Moreover, the key findings using the comprehensive dynamic analysis are presented and discussed.  相似文献   

18.
In this study, zero energy building (ZEB) with four occupants in the capital and most populated city of Iran as one of the biggest greenhouse gas producers is simulated and designed to reduce Iran's greenhouse emissions. Due to the benefits of hydrogen energy and its usages, it is used as the primary energy storage of this building. Also, the thermal comfort of occupants is evaluated using the Fanger model, and domestic hot water consumption is supplied. Using hydrogen energy as energy storage of an off-grid zero energy building in Iran by considering occupant thermal comfort using the fanger model has been presented for the first time in this study. The contribution of electrolyzer and fuel cell in supplying domestic hot water is shown. For this simulation, Trnsys software is used. Using Trnsys software, the transient performance of mentioned ZEB is evaluated in a year. PV panels are used for supplying electricity consumption of the building. Excess produced electricity is converted to hydrogen and stored in the hydrogen tank when a lack of sunrays exists and electricity is required. An evacuated tube solar collector is used to produce hot water. The produced hot water will be stored in the hot water tank. For supplying the cooling load, hot water fired water-cooled absorption chiller is used. Also, a fan coil with hot water circulation and humidifier are used for heating and humidifying the building. Domestic hot water consumption of the occupants is supplied using stored hot water and rejected heat of fuel cell and the electrolyzer. The thermal comfort of occupants is evaluated using the Fanger model with MATLAB software. Results show that using 64 m2 PV panel power consumption of the building is supplied without a power outage, and final hydrogen pressure tank will be higher than its initial and building will be zero energy. Required hot water of the building is provided with 75 m2 evacuated tube solar collector. The HVAC system of the building provided thermal comfort during a year. The monthly average of occupant predicted mean vote (PMV) is between ?0.4 and 0.4. Their predicted percentage of dissatisfaction (PPD) is lower than 13%. Also, supplied domestic hot water (DHW) always has a temperature of 50 °C, which is a setpoint temperature of DHW. Finally, it can be concluded that using the building's rooftop area can be transformed to ZEB and reduce a significant amount of greenhouse emissions of Iran. Also, it can be concluded that fuel cell rejected heat, unlike electrolyzer, can significantly contribute to supplying domestic hot water requirements. Rejected heat of electrolyzer for heating domestic water can be ignored.  相似文献   

19.
Energy storage using liquid organic hydrogen carrier (LOHC) is a long-term method to store renewable energy with high hydrogen energy density. This study investigated a simple and low-cost system to produce methylcyclohexane (MCH) from toluene and hydrogen using fluctuating electric power, and developed its control method. In the current system, hydrogen generated by an alkaline water electrolyzer was directly supplied to hydrogenation reactors, where hydrogen purification equipment such as PSA and TSA is not installed to decrease costs. Hydrogen buffer tanks and compressors are not equipped. In order to enable MCH production using fluctuating electricity, a feed-forward toluene supply control method was developed and introduced to the system. The electrolyzer was operated under triangular waves and power generation patterns of photovoltaic cells and produced hydrogen with fluctuating flow rates up to 7.5 Nm3/h. Consequently, relatively high purity of MCH (more than 90% of MCH mole fraction) was successfully produced. Therefore, the simplified system has enough potential to produce MCH using fluctuating renewable electricity.  相似文献   

20.
In this paper, the operation performance of three novel kinds of cogeneration systems under design and off-design condition was investigated. The systems are MGT (micro gas turbine) + ORC (organic Rankine cycle) for electricity demand, MGT+ ERC (ejector refrigeration cycle) for electricity and cooling demand, and MGT+ ORC+ ERC for electricity and cooling demand. The effect of 5 different working fluids on cogeneration systems was studied. The results show that under the design condition, when using R600 in the bottoming cycle, the MGT+ ORC system has the lowest total output of 117.1 kW with a thermal efficiency of 0.334, and the MGT+ ERC system has the largest total output of 142.6 kW with a thermal efficiency of 0.408. For the MGT+ ORC+ ERC system, the total output is between the other two systems, which is 129.3 kW with a thermal efficiency of 0.370. For the effect of different working fluids, R123 is the most suitable working fluid for MGT+ ORC with the maximum electricity output power and R600 is the most suitable working fluid for MGT+ ERC with the maximum cooling capacity, while both R600 and R123 can make MGT+ ORC+ ERC achieve a good comprehensive performance of refrigeration and electricity. The thermal efficiency of three cogeneration systems can be effectively improved under off-design condition because the bottoming cycle can compensate for the power decrease of MGT. The results obtained in this paper can provide a reference for the design and operation of the cogeneration system for distributed energy systems (DES).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号