共查询到17条相似文献,搜索用时 58 毫秒
1.
2.
基于小波变换的动态脑电节律提取 总被引:8,自引:2,他引:8
针对脑电信号和其他医学信号的非平稳性,引入小波变换处理临床脑电信号的动态特性。根据脑电信号的不同节律特性,提出应用小波包变换构造不同频率特性的滤波器,提取脑电信号的4种节律,并由各种节律对应的小波系数构造动态脑电地形图。为了研究不同脑功能状态下脑电信号4种节律的动态特性,文中对两组不同临床脑电数据进行分析与比较,给出了有关的实际分析结果。实验结果表明,利用小波包分析的滤波特性,能够有效地反映临床脑电不同节律的动态特性,也为分析其他生物医学信号提供了一条新的途径。 相似文献
3.
研究脑力劳动和运动引起的精神疲劳与脑电特征参数之间的相关性,以及这些特征参数在不同状态下的变化规律。通过对两种精神疲劳状态以及不疲劳状态下采集的脑电信号进行小波包分析,提取出脑电各节律并计算脑电对数能量熵,定性分析了各特征参数与不同状态间的关联性。实验结果表明,相较于不疲劳状态而言,前额叶区的脑电各节律相对功率和脑电对数能量熵在两种精神疲劳状态下均有显著变化。因此,前额叶区的脑电各节律相对功率与脑电对数能量熵可以作为衡量精神疲劳的生理指标。 相似文献
4.
头皮脑电(EEG)信号反映了大脑皮层神经元细胞群自发性节律性的电生理活动,含有丰富的生理与病理信息,是临床脑神经与精神疾病诊断的重要依据.针对抑郁症的研究和诊断中缺少客观有效的量化参数和指标的状况,提出一种基于小波包分解节点重构信号的功率谱熵值(记为W值)的脑电信号分析方法,并利用此方法对静息态的脑电信号进行计算和分析.实验和分析结果表明:抑郁症患者脑电信号S32节点(频率24~32 Hz)的熵值(置信区间[0.0129,0.0176])在部分脑区显著大于正常健康人(置信区间[0.0246,0.0303]),显示抑郁症病人快波节律的能量分布存在弥散性,符合现在关于抑郁症患者自我调节能力减弱的发病机制.对结果进行了T检验统计分析,证明了这种辨别方法的准确性和可行性,将为抑郁症疾病检测诊断提供有效的量化物理指标. 相似文献
5.
给出了多尺度熵的算法步骤,对生理信号中两种常见噪声白噪声和1/f噪声的多尺度熵进行了研究,分析表明1/f噪声有比白噪声更为复杂的结构,探讨了混沌信号logistic映射的多尺度熵特征,在此基础上对不同睡眠时期脑电信号的多尺度熵进行了比较,结果显示脑电信号具有复杂结构,醒期熵值最高,睡眠Ⅳ期熵值最低;睡眠Ⅰ期、睡眠Ⅱ期和醒期复杂度较高,变化趋势接近;睡眠Ⅲ期、睡眠Ⅳ期和快速眼动期变化趋势基本一致,2尺度后复杂度基本保持不变。 相似文献
6.
研究了基于小波包变换和Fisher线性分类器的水下目标识别方法。小波包是在小波变换的基础上发展起来的时频分析方法,能够对非平稳信号提供更丰富的时频信息。通过对水下目标辐射噪声信号进行小波包分解,提取小波包分解的终端节点的熵值作为特征矢量,应用Fisher线性分类器设计的分段线性分类器对水下目标进行分类识别。仿真结果表明,以小波包熵作为特征矢量的分类方法具有较高的识别正确率。 相似文献
7.
8.
脑电波是一种复杂的生物电信号,可反应出大脑内部的活动及注意力等精神状态。基于此,论文设计了注意力相关的脑电实验,并完成了受试者脑电数据的采集,对所采集的脑电数据分别从以下两种角度进行研究:从时频分析的角度,采用db4小波基对原始脑电信号进行7层小波包分解,提取了β波/θ波能量占比作为特征量;从非线性动力学的角度,提取脑电信号的样本熵作为特征,并分别对各受试者进行注意力的分级研究。通过对比分析,结果表明两者都能从一定程度上表征注意力水平的状况,但样本熵对于多级注意力的区分度更好。 相似文献
9.
10.
小波包熵和BP神经网络在意识任务识别中的应用 总被引:1,自引:0,他引:1
任亚莉 《计算机应用与软件》2009,26(8):78-81
探索了小波包熵和BP神经网络在识别左右手想象运动中的作用.采用脑-机接口2003竞赛中Graz科技大学提供的脑电数据,计算C3、C4电极8~16Hz频带脑电信号的小波包熵,将其作为反应想象左右手运动的特征量,用BP神经网络对大脑想象左右手运动任务进行分类,最大分类正确率可达88.57%,与使用线性判别式算法分类结果相比,效果更好.脑电信号小波包熵随时间的变化与事件相关去同步和事件相关同步现象相一致,可在线识别左右手想象运动,为大脑运动意识任务的特征提取及肢残患者的临床康复提供了新思路. 相似文献
11.
脑电信号(Electroencephalograph,EEG)是一种产生自脑神经细胞活动的极其微弱的电位反映,同时也是一种非平稳、非线性的电信号。针对脑电信号在采集过程中易受到外界噪声干扰的问题,为了降低脑电信号中噪声的含量,提高脑电信号分解效率,提出了一种基于小波包的局部均值分解(Local Mean Decomposition,LMD)方法。该方法主要利用小波包对采集到的脑电信号进行去噪预处理,再通过局部均值分解进行分析。仿真实验结果表明,采用经过小波包去噪预处理的LMD分解能够有效地去除原始信号中的高频噪声,使得局部均值分解效率提高,且能够有效消除噪声分量对分解过程和结果的影响。 相似文献
12.
13.
工程实践中的振动信号往往存在噪声干扰而导致信号特征信息无法显露,传统小波包软、硬阈值函数去噪形式固定,无法依据信号小波包分解系数的噪声干扰情况进行调整.据此,提出一种新的介于软、硬阈值函数之间的改进小波包阈值函数,并将排列熵作为信号含噪情况表征参数引入阈值函数中.对信号小波包系数进行排列熵计算,并依据该值对阈值函数进行自适应调整,使得新的阈值函数能够对含噪较多的小波包系数进行大尺度收缩而对含实际信号特征较多的小波包系数尽可能地保留,从而达到最佳的去噪效果.对滚动轴承振动实验信号的去噪分析,并与其他方法进行对比,验证了该方法的有效性与优越性. 相似文献
14.
15.
16.