首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
徐凌  崔兴福  齐莉  梁宏  张建微 《石油物探》2007,46(3):226-230
在复杂近地表条件下采集的地震资料,由于地形起伏剧烈,低、降速带变化大,采用传统的垂向时移静校正方法会使地震波场发生扭曲,降低速度分析精度,影响资料的最终成像质量。近地表层析反演与波场延拓联合基准面校正的方法有利于解决复杂近地表条件下地震资料的静校正问题。其应用思路是先采用折射波层析反演得到近地表模型,再根据修正后的近地表速度模型分别对检波点和炮点进行波场延拓。具体实现步骤是:将水平基准面置于地形之上,根据惠更斯-菲涅尔原理和波场互易原理以及炮、检点的空间分布位置,以地表接收到的地震数据为二次震源,将检波点和炮点分别先向下、后向上延拓到水平基准面上,从而实现复杂近地表地区地震数据处理的层析反演与波场延拓联合基准面校正。  相似文献   

2.
复杂地表有限差分波动方程向上基准面校正   总被引:7,自引:0,他引:7  
江凡  杨锴  程玖兵 《石油物探》2006,45(1):15-20
对于地表高程变化剧烈、近地表速度很高的山地地震数据,采用常规高程静校正已不能满足基准面校正处理的要求,而波动方程基准面校正则可以实现准确的基准面校正。波动方程基准面校正采用两步法来实现,即先在共炮点道集上将检波点延拓到基准面,然后在共检波点道集上将炮点延拓到基准面。给出了非水平地表速度模型和模拟西部某地区复杂地表速度模型的2个算例,应用频率空间域有限差分算子进行了波场延拓。非水平地表速度模型的波场延拓结果表明,算法是可行的;复杂地表速度模型的计算结果表明,向上波动方程基准面校正方法能够正确地消除复杂近地表结构对数据的影响。分别对向上波动方程基准面校正和常规高程静校正后的数据进行了叠加处理和叠后深度偏移处理,结果表明,经过向上波动方程基准面校正后的成像结果较之常规高程静校正结果更为精确。  相似文献   

3.
基于起伏地表的合成平面波叠前深度偏移   总被引:1,自引:1,他引:0  
实践表明,波场延拓叠前深度偏移比Kirchhoff积分法成像精度高,但计算量大;而平面波叠前深度偏移比炮域叠前深度偏移运算效率高,且成像精度相当,但只适应水平地表.为此,介绍了一种适应起伏地表的合成平面波叠前深度偏移方法,其基本思路是:以地震排列的最高点所在平面为波场延拓起始面,将起伏地表的地震排列观测数据(检波点或炮点)向下延拓到地表最低点所在的水平基准面,实现波动方程基准面校正;在此平面上应用p变换将全部炮点合成为平面波震源,从而使全部炮记录分解成平面波记录;运用下行波方程、上行波方程分别将平面波震源波场、平面波记录波场沿深度方向外推,在每个深度进行波场相关并累加,获得该深度的成像波场值,得到共分角度的平面波偏移道集;将所有不同共分角度的平面波偏移道集按坐标叠加,得到基于起伏地表的合成平面波叠前深度偏移成像结果.四川龙驹坝地质模型的理论试算及四川实际山地资料HNT12线的处理结果表明:基于起伏地表的合成平面波叠前深度偏移成像结果的质量与传统炮域叠前深度偏移的结果相当,但运算效率显著提高,且适应起伏地表.  相似文献   

4.
TDO基准面校正方法研究与应用   总被引:1,自引:0,他引:1  
 由于波动方程基准面校正方法要求建立精确的表层速度模型和运用共炮点道集交替延拓,计算效率较低。为此本文在Alkhalifah1等提出的TDO基准面校正方法基础上进行研究,并将此法和波动方程基准面校正方法进行了对比,认为TDO的处理过程是一个样点对样点的映射过程,不是一个波场变换的过程,能同时将炮点和检波点延拓到基准面上。理论模型和实际数据测试结果均表明该方法是非常有效。  相似文献   

5.
有限差分法波场延拓海水层基准面校正   总被引:4,自引:0,他引:4  
在海上多波地震勘探中,野外施工设计采用海水中激发,海底接收的观测方式,由于炮点和检波点不在一个基准面上,就带来了基准面校正问题,在选定海底为基准面后,通常将炮点校正到海底,若海水层的深度超过100m,简单时移校正的误差比较大,应该采用更精确的波场延拓基准面校正方式,对理论合成记录和莺歌海地区的实际资料进行了方法测试,效果令人满意。  相似文献   

6.
起伏地表条件下的合成平面波偏移及其并行实现   总被引:3,自引:0,他引:3  
 基于波动方程的延拓方法保持了波场的动力学和运动学特征,能很好地克服时移静校正法(使波场产生畸变)的不足,消除地表起伏的影响,将非水平观测界面记录改造为水平观测界面(新基准面)记录。在重建的水平基准面上进行平面波源和平面波源记录的合成,可克服以往由于地形起伏而无法进行平面波源和平面波源记录合成的问题,完成起伏地表条件下的平面波偏移。为了进一步提高运算效率,可按照将平面波的不同入射角、不同频率范围分配到各个节点的原则,进行MPI并行计算,可成倍地提高计算效率。具体步骤如下:①将共炮集数据延拓至最低起伏面以下的新基准面;②从延拓后的共炮集数据中抽出共接收点道集;③将共接收点道集延拓至最低起伏面以下的新基准面;④从延拓至新基准面的接收点道集中抽出共炮集数据。上述整个过程相当于将观测系统下移至新的基准面。模型试算及实际资料处理结果表明,基准面重建后的并行平面波深度偏移结果与基于原始炮记录应用波场直接下延法得到的深度偏移数据的效果相当,但是前者的计算效率随着应用节点数的增多而成倍地提高。  相似文献   

7.
延拓校正法     
一般的静校正方法都是假设地震波在剖面上部的传播射线是垂直地表的(或基准面),因此,一个地震道只有一个静校正量。这种假设对相对高差很大的大山区来说是不成立的。为了适应大山区的特点,现将炮点和检波点按其射线路径从地面移至基准面进行校正,其校正时间是炮检距、反射层深度、反射层倾角、检波点和炮点同基准面的高差以及地震波在剖面上部传播速度的函数。为同一般静校正方法相区别,称之为“延拓静校正”。延拓后的正常时差校正为“延拓动校正”,两者一起统称为“延拓校正”。用延拓校正原理编制的倾角速度扫描程序可同时获得某个CMP附近的反射层倾角与均方根速度,此二参数的变化,不仅可用于延拓校正,且能粗略地反映剖面上速度变化的规律。用“延拓校正”程序在川东、川南等地区的几个剖面试处理,都得到了较好的效果。  相似文献   

8.
在海上多波地震勘探中,野外施工设计采用海水中激发,海底接收的观测方式.由于炮点和检波点不在一个基准面上,就带来了基准面校正问题.在选定海底为基准面后,通常将炮点校正到海底,若海水层的深度超过100m,简单时移校正的误差比较大,应该采用更精确的波场延拓基准面校正方式.对理论合成记录和莺歌海地区的实际资料进行了方法测试,效果令人满意.  相似文献   

9.
盆山结合部位近地表结构复杂,地震资料信噪比低,静校正问题突出。以横穿西南天山与塔里木盆地的某二维地震测线为例,通过分析盆地、盆山结合部和山区的典型单炮记录,确定了一套基于浮动基准面的层析静校正流程——对起伏地表的高程进行平滑,将其作为浮动基准面;在该基准面上应用初至波层析反演方法计算炮、检点静校正量,并应用于数据体上;之后对该数据体进行速度分析和动校正等常规处理,再应用高程法计算浮动基准面到最终基准面的炮、检点静校正量。实际应用效果表明,该方法能较好地解决盆山结合部资料中的中、长波长静校正问题,地震剖面的成像质量得到了明显提高。  相似文献   

10.
基于混合法波场外推的波动议程基准面校正   总被引:1,自引:1,他引:0  
在偏移成像中,通常要求记录和震源都在同一水面内,然而实际观测经常遇到地形起伏的情况,当速度横向变化不大时,地形起伏对数据的影响可通过常规的静校正加以消除,但当速度横向变化较大时,再用常规的静校正来消除地形的影响就会有较大的误差,本文基于波动议程,采用波动延拓的混合法来进行基准校正,文中阐述了波动议程基准面校正的基本原理,给出了混合法波场延拓的一般公工,就共炮点记录和零炮检距记录进行了计算,数值计算结果证实了该方法的有效性和准确性,可用于实际资料的处理。  相似文献   

11.
双平方根算子波场延拓道集速度分析   总被引:1,自引:0,他引:1  
在中心点一半偏移距域,利用波动方程的叠前双平方根算子.实现炮点及检波点波场向下延拓。通过速度扫描,在波场延拓后的深度域共中心点道集和经分选后的共成像点道集上,分析速度变化对成像点道集的影响。利用分偏移距成像,修正速度场,以达到提高成像精度的目的。  相似文献   

12.
波动方程偏移的成像精度高于Kirchhoff类偏移,且对速度误差更敏感,故舍弃Kirchhoff深度偏移,针对波动方程炮检距域共成像点道集直接进行速度迭代,更具现实意义。为此提出一种基于属性偏移的计算策略,可实现高效的波动方程类偏移的炮检距域共成像点道集计算。通过对地表炮检距调制后的数据再偏移,将该偏移结果与原始数据偏移结果的比值作为各成像点的地表炮检距值;依此将偏移结果重排入所属炮检距段;逐炮依次计算并叠加,最终获得地表炮检距道集。上述两次偏移可纳入成像循环中同时计算,因此只增加了一次检波点波场的传播,计算量仅增加约30%。通过2D、3D模型及实际数据对比,验证了该计算方法的有效性。  相似文献   

13.
本文利用"相移法"波场延拓,把VSP上行反射波共检波点道集的炮点向下延拓至检波点所在的水平基准面上。延拓后的道集与地面资料类似,再进行速度分析可得到检波点以下地层的均方根速度,弥补了VSP旅行时反演不能求井下伏地层速度的缺陷。对塔里木轮古38三维VSP井区不同方位的walkway线进行速度分析,最终获得目标区域的三维速度体。  相似文献   

14.
平面波偏移、分角度成像与AVA道集生成   总被引:3,自引:1,他引:3  
基于波场延拓的叠前深度偏移是实现复杂构造地质体成像的可靠方法,但存在着计算量大、对观测系统适应性差等缺点。平面波偏移是利用波动方程实现精确叠前成像的另一类方法,其基本原理是:通过地表延迟放炮的方式生成平面波震源,利用下行波方程进行波场正向延拓得到下行波场;对地表采集的炮集记录,以组合延迟放炮的方式叠加,得到地表平面波记录,利用上行波方程进行波场反向延拓得到上行波场;二者互相关求和,实现平面波地下波场成像。分析表明:平面波成像技术的精度与单平方根算子的共炮点道集偏移和双平方根算子的共中心点道集偏移相当,但计算速度要快得多,且易于并行计算。二维Marmousi模型数值计算表明,射线参数的范围和间隔是影响平面波成像质量的主要因素;不同角度入射的平面波对最终成像结果的贡献是不同的,据此可以有针对性地选择射线参数进行平面波成像。  相似文献   

15.
沙漠地区地震检波器耦合的高频信号匹配滤波技术   总被引:6,自引:4,他引:2  
在沙漠地区,由于常规检波器与表层干沙不能很好耦合,因此使地震资料的分辨率降低;而地震波检测系统(即特殊耦合检波器)能改善检波器与表层干沙的耦合关系,但其野外施工的效率较低。为此,利用特殊耦合检波器和常规耦合检波器在相同条件下采集的单道地震数据,采用最佳维纳滤波方法,设计了耦合匹配滤波器。应用耦合匹配滤波器对常规检波器采集的地震数据进行了处理,拓宽了叠前地震数据的频带,提高了叠加资料的分辨率,基本达到了用特殊耦合检波器采集的地震资料的品质。  相似文献   

16.
针对山前带"复杂地表、复杂构造"双复杂地震地质条件造成的资料信噪比低、静校正问题严重、地震波场复杂等一系列地球物理难题,在"真地表"地震成像面的确定及高频静校正的基础上,以基于起伏地表的深度域速度分析与建模为重点,以起伏地表逆时叠前深度偏移为核心建立了一套高精度地震成像处理流程,将长波长静校正问题隐含在偏移成像过程中,直接从起伏地表进行波场延拓和偏移成像,以便更好地应对复杂山前带的地震成像问题。针对性模型试算和实际资料处理表明,该技术在应对双复杂地震资料偏移成像时具有更高的精度,是复杂山前带资料高精度地震成像更理想的技术手段。  相似文献   

17.
地震数据是典型的带限信号,这限制了传统高频射线理论在其偏移处理中的应用。本文构建了一种适用于横向各向同性(TI)介质的带限射线束传播算子,并应用于射线束偏移。在局部平面波近似下构建了带限射线追踪算法,并将该算法扩展到TI介质。在带限中心射线基础上引入旁轴近似展开,构建适用于TI介质的带限射线束传播算子,将该带限射线束传播算子应用于各向异性介质射线束偏移。该传播算子在保持射线类方法高效灵活优点的基础上,兼具波动类波传播算子能够描述带限波场传播的特性。数值实验表明,各向异性带限射线束改善了盐丘等复杂构造与各向异性区域的照明,提高了偏移成像剖面和角度域共成像点道集的质量。  相似文献   

18.
共炮(检)点剩余静校正方法   总被引:1,自引:0,他引:1  
本文针对低信噪比、剩余静校正量较大的地震资料,提出了分别计算炮点和检波点剩余静校正量的共地面点剩余静校正方法。该法基于经过动校正后的共炮点数据集和共检波点数据集分别求取检波点剩余静校正量和炮点剩余静校正量,并分别将共炮、检点道集动校正后的叠加道作为模型道与道集内各个道进行互相关,求出各个炮、检波点的剩余静校正量。理论和实际数据的测试表明,这种方法可以解决低信噪比、剩余静校正量较大地震资料的静校正问题。  相似文献   

19.
随着勘探开发逐步深入, 成像已逐步从单纯利用纵波数据发展为弹性波数据。针对双重复杂构造探区, 在弹性波高斯束偏移的基本原理中, 引入高程及地表倾角信息, 推导了由高斯束位移矢量表示的解耦弹性波场反向延拓公式, 利用互相关成像条件且通过转换波极性校正得到起伏地表条件下的P-P波和P-S波高斯束偏移算子, 发展了一种解耦的起伏地表弹性波高斯束偏移方法, 此方法无须对地震数据进行纵横波分离。在实现方法的基础上, 通过典型起伏地表模型的弹性波现象分析、成像结果分析及成像角道集提取, 证实了解耦的起伏地表弹性波高斯束偏移成像方法的正确性、适用性及良好的成像效果。  相似文献   

20.
关于山地静校正和偏移基准面的一些认识   总被引:7,自引:6,他引:1  
对在西北地区复杂地表条件下获得的地震资料的处理中 ,静校正和基准面的选择是影响处理效果的关键技术环节。根据多年山地地震资料处理工作的实践 ,提出了用野外地表调查参数与折射波静校正相结合的方法剥去低降速带到高速带顶界、将数据校正到一个固定基准面、进行高频和低频分离、在 CMP面上求取速度、进行叠加 ,然后用固定基准面偏移法解决好偏移基准面问题。真正解决好这一问题的最终出路是在深度域从地表开始进行偏移  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号