首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
陈慧  栾道成  李力  李亚军 《硬质合金》2012,29(2):101-105
采用高能球磨法制备超细WC-Co硬质合金。研究了1 390℃真空通Ar常规烧结后再热等静压烧结(HIP),烧结温度1 320℃,80 MPa下保温60 min对WC-Co硬质合金组织和性能的影响。结果表明:1 390℃真空通Ar烧结,可获得组织细小、综合性能好的YG8、YG10超细硬质合金。其中YG8超细硬质合金硬度达93.8 HRA,抗弯强度达2 290 MPa,YG10超细硬质合金硬度达93.3 HRA,抗弯强度达2 250 MPa。真空通Ar常规烧结再HIP能提高合金的致密度,但会使WC晶粒长大,硬度、抗弯强度、矫顽磁力等性能均下降。  相似文献   

2.
采用2.45GHz高功率多模腔微波炉制备WC8Co硬质合金,对压坯的收缩率和合金的显微组织进行研究。结果表明:液相温度出现在1300°C附近;在烧结温度1450°C下保温5min能获得几乎全致密的合金试样。微波烧结法制备的合金晶粒要比真空烧结制备的合金晶粒尺寸细小且分布更均匀。另外,WC晶粒的尺寸和分布主要取决于烧结温度;保温时间对合金晶粒的影响很小,无论在1450°C下保温多长时间WC平均晶粒的尺寸始终保持在2.7μm。  相似文献   

3.
采用低压烧结方法制备YG15粗晶硬质合金,研究了烧结温度对硬质合金组织和性能的影响,采用扫描电子显微镜观察硬质合金显微组织,固体密度测量组件测试合金致密度,采用洛氏硬度计、万能试验机、矫顽磁力计分别测试合金的洛氏硬度、抗弯强度和矫顽磁力。对不同烧结温度下的性能比较分析得出:YG15粗晶硬质合金的孔隙度A02B00C00,硬度86.0~88.1 HRA,抗弯强度3 018~3 426 MPa,矫顽磁力5.45~6.20 k A/m,1 360、1 375℃低压烧结时,合金的密度、硬度和抗弯强度都较高,而1 390、1 400℃低压烧结时性能下降,1 375℃是YG15粗晶硬质合金的最佳烧结温度。  相似文献   

4.
孙东平 《硬质合金》2009,26(3):141-147
系统研究晶粒长大抑制剂VC和Cr3C2对WC-8%Co超细晶硬质合金烧结过程中收缩率、相变温度和晶粒长大的影响。研究表明,WC-8%Co超细晶硬质合金的烧结收缩和致密化过程主要发生在固相烧结阶段,在液相出现前,合金的致密化程度已达到95%。晶粒长大抑制剂VC和Cr3C2的加入,显著降低了超细晶硬质合金烧结过程中液相出现的温度,且不同程度地阻碍了WC-8%Co超细晶硬质合金烧结过程中致密化的进程和速度。与未加入晶粒长大抑制剂的合金相比,其致密化的进程大约延迟80℃。  相似文献   

5.
将原位合成WC-6Co复合粉末采用干袋式冷等静压压制成型(压制压力1×10~8 Pa、保压时间15 s),将压制好的坯料采用低压烧结炉烧结(烧结温度1360℃、烧结时间40 min、加压5 MPa、保温保压时间20 min),烧结制备超细YG6硬质合金,对合金的形貌、金相组织及物理力学性能进行分析。结果表明:原位合成WC-6Co复合粉末制备的超细YG6硬质合金,晶粒异常长大,WC平均晶粒尺寸为0.8μm,硬度HV_(30)为(21500±100) MPa,较传统超细YG6X硬度高。再将WC-6Co复合粉末采用滚动湿磨、压力式喷雾干燥、掺成型剂、挤压成型、低压烧结等工序制备超细YG6硬质合金,研究不同晶粒长大抑制剂配比、球磨时间、挤压压力、烧结温度对合金性能的影响。结果表明:添加0.3%VC、0.8%Cr_3C_2(质量分数),湿磨48 h,挤压压力24 MPa,烧结温度1340℃,制备的超细YG6硬质合金WC晶粒均匀,无异常长大的WC晶粒,WC平均晶粒度尺寸0.4μm,呈多边形,外形较圆。强度、硬度最高,抗弯强度TRS为(2250±20) MPa、硬度HV30为(22600±100) MPa。断口形貌为沿晶断裂,沿WC与WC晶界断裂或WC与Co晶界断裂。  相似文献   

6.
放电等离子烧结纳米硬质合金的研究   总被引:12,自引:3,他引:12  
采用放电等离子烧结 (SPS)和普通真空烧结两种烧结工艺烧结 92WC - 8Co纳米硬质合金。放电等离子烧结 ,在 115 0℃的烧结温度、4.5kN压力下保温 5min ,烧结体就完全致密 ,其合金中的WC晶粒度小于 2 0 0nm ,硬度可达到 94.2HRA。真空烧结达到完全致密 ,烧结温度需 140 0℃ ,保温时间 30min ,WC晶粒度为 (30 0 40 0 )nm ,硬度最高为 93HRA。结果表明 :放电等离子烧结硬质合金的温度显著降低 ,烧结时间大大缩短 ,有效地抑制了WC晶粒的长大。SPS还显著降低微孔等缺陷 ,制品性能也大大提高。  相似文献   

7.
微波烧结硬质合金工艺的升温速度分析   总被引:4,自引:0,他引:4  
研究WC-11.5Co硬质合金的微波烧结工艺以及升温速度对合金致密度、显微组织、硬度(HRA)的影响.结果表明,微波烧结能够快速制备高致密度、高硬度的硬质合金;在10.4~61.9 ℃/min范围内,升温速度对合金组织和性能未产生明显影响,硬度(HRA)在88.5~89.5之间,高于常规烧结的87.6和牌号为YG11C产品的硬度指标.  相似文献   

8.
采用机械合金化、添加微量Y2O3和冷等静压、液相烧结工艺制备Ф25mm的晶粒度为3~4μm的细晶93W-4.9Ni-2.1Fe(质量分数%,下同)合金棒材,研究粉末机械合金化、添加微量Y2O3、烧结温度和保温时间对合金棒材烧结致密化和显微组织的影响。结果表明:在1480℃液相烧结时钨晶粒发生明显球化,在此温度下降低保温时间对控制钨晶粒长大有较大影响,保温时间为30min时,钨晶粒尺寸为5~8μm;保温时间为60min时,钨晶粒为8~10μm。添加微量稀土氧化物Y2O3可以进一步有效地抑制晶粒的长大,降低合金的钨晶粒尺寸和提高组织均匀性,在1480℃烧结60min时,钨晶粒为3~4μm,而且晶粒尺寸分布更均匀。  相似文献   

9.
放电等离子烧结时间对高密度W-7Ni-3Fe合金组织性能的影响   总被引:1,自引:0,他引:1  
利用放电等离子烧结技术制备高密度W-7Ni-3Fe合金,研究了烧结保温时间对合金致密度、物相、显微组织以及力学性能的影响。结果表明,在1200℃烧结5~14 min后,合金均能实现充分致密化,保温时间对相对密度影响较小。合金中的W晶粒随保温时间的延长开始尺寸变化不大,烧结11 min以上才明显长大,但大多数W晶粒尺寸仍小于5μm。烧结时间超过8min,合金中新出现一种灰色的富W组织。随保温时间延长,合金的洛氏硬度下降不大,然而抗弯强度却明显上升。合金弯曲断口形貌在较短保温时间以沿晶断裂为主,粘结相的延性撕裂和W晶粒的解理断裂随烧结时间延长逐渐增多。  相似文献   

10.
WC-7Co硬质合金放电等离子烧结工艺   总被引:1,自引:0,他引:1  
周瑞  孙桂芳  路丽梅  刘旭 《金属热处理》2012,37(11):107-110
采用放电等离子烧结(spark plasma sintering,SPS)技术制取WC-7Co硬质合金。研究了烧结温度、烧结压力对烧结WC-7Co硬质合金力学性能的影响,探讨了最佳烧结热压比,分析了粉末烧结致密化过程和晶粒长大机制。结果表明,WC-7Co硬质合金在1150℃烧结时,随着压力的增加,烧结致密性呈现先增加后降低的变化趋势,在30 MPa时可获得最佳烧结致密性。在升温速率为100℃/min,保温时间为5 min,烧结温度为1150℃,热压比为38℃/MPa的工艺条件下,利用SPS技术可制备组织致密、综合力学性能良好的WC-7Co硬质合金。  相似文献   

11.
采用经球磨扁平化处理的W粉末为原料,添加适量Co、C(碳黑)、成型剂及纳米W粉制备板状晶硬质合金,研究了烧结温度、时间和添加纳米W粉,对板状晶硬质合金显微组织结构和性能的影响。结果表明,球磨预处理中颗粒W粉末可获得扁平化程度高的薄片状W粉末,以其为原料制备的WC-12%Co(质量分数)板状晶合金相对密度达97%,合金硬度呈现出明显的各向异性;添加纳米W粉或提高烧结温度、延长烧结时间,均有利于压坯烧结收缩致密化,生成更多的板状WC晶粒。  相似文献   

12.
以超细WC-8Co硬质合金为研究对象,混合添加晶粒长大抑制剂Cr3C2/TaC。结果表明,合金在添加0.8wt%Cr3C2/TaC时的TRS达到3675MPa,而在添加0.5wt%和1.0wt%Cr3C2/TaC时的TRS降到2120MPa;Cr3C2/TaC在很大程度上影响了合金烧结时的致密化,WC-8Co-0.8wt%(Cr3C2/TaC)压坯在1400℃下完全致密化需要的烧结时间为60分钟;而同类普通WC-8Co-0.8wt%(Cr3C2/TaC)的压坯,由于没有超细粉末的高表面能,烧结60分钟后密度只能达到理论密度的98.8%;TaC和Cr3C2对W在γ相中的固溶度具有相反的作用。  相似文献   

13.
通过球磨与低压烧结方法,制备了超细晶WC-10Co合金。采用X射线衍射、扫描电镜和断裂韧性测试,研究了LaB6掺杂对超细晶WC-10Co合金的组织与断裂韧性影响。结果表明,掺杂微量LaB6,能明显提高烧结体合金的致密度,减少合金中WC晶粒的异常长大及烧结过程中Co3W3C相的形成,合金的断裂韧性最终得以提高。1450℃烧结后,掺杂1%LaB6合金的断裂韧性从7.3 MPa.m1/2提高到12.3 MPa.m1/2。  相似文献   

14.
WC–Co cemented carbides, well-known as the conventional tooling materials, have not been successfully produced by one step additive manufacturing processes such as selective laser melting(SLM) yet. The microstructure evolution as well as WC grain growth behavior has rarely been investigated in detail during SLM process. In this study, the WC–Co cemented carbides with different Co contents(12–32 wt%) were prepared by optimized SLM processes for comparative investigation of densification behavior, microstructure characterization and mechanical property. The increase in Co content in feedstock carbide granules can improve the densification behavior during SLM process. The SLM processed WC-12 Co shows larger average WC grain size and higher percentage of coarser WC grains as compared with both WC-20 Co and WC-32 Co. The microstructure characterization, combined with finite element simulation, shows the WC grain growth mechanisms include agglomeration and dissolution-deposition of WC during SLM process and agglomeration of WC is an important mechanism especially for WC–Co cemented carbides with Co content as low as 12 wt%. The comparison between horizontal(perpendicular to the SLM laser beam) and vertical(parallel to the SLM laser beam) cross sections of carbides shows that SLM process introduces a certain degree of microstructure and mechanical behavior anisotropy for WC-12 Co, WC-20 Co, and WC-32 Co.  相似文献   

15.
The aim of this work is to study the effect of Cu on sintering temperature, densification, microstructure and mechanical properties of WC-6Co cemented carbides fabricated by spark plasma sintering (SPS). Fine grained WC powders with an average size of 1.2 μm, were investigated. Microstructures, hardness, fracture toughness and wear resistance of WC-6(Co/Cu) cemented carbides were measured and observed using SEM, mechanical property test. The results show that the sintering temperature of WC-6Co cemented carbides can be decreased obviously with Cu added; addition of Cu reduced grain size to 0.85 μm, but led to lower density. The adding amount of Cu should be controlled within a certain range, and the samples adding the appropriate proportion of Cu can obtain higher hardness and wear resistance.  相似文献   

16.
采用化学共沉淀法制备ITO前驱物,分别于600及1000℃下热处理前驱物,得到两种ITO粉体.粉体模压成型得到素坯,在400~1550℃内采用烧结法、氧气氛下烧结素坯制备出ITO靶材.对粉体及靶材进行表征和分析,研究了烧结过程中晶粒生长情况、靶材微结构与温度之间关系及靶材的失氧现象.得出600℃粉体为单相ITO固溶体、粒径为15 nm,1000℃粉体有少量SnO2析出、粒径为28 nm且其分散性和晶化程度优于600℃的粉体.两种粉体烧结制备靶材过程符合Coble固相烧结理论,1550℃时晶体出现类似二维成核生长方式的生长台阶.靶材密度随温度升高而增加,1550℃时随保温时间延长而增加.靶材致密化过程由团聚程度及团聚体大小决定,1000℃粉体制备的靶材密度高于600℃粉体所制靶材.两类靶材含氧量均低于理论值,1000℃粉体所制靶材含氧量高于600℃的含氧量.  相似文献   

17.
采用喷雾干燥-氢气还原法制备超细/纳米晶W-20Cu(质量分数,%)复合粉末,粉末压坯直接从室温推入高温区烧结不同时间后直接取出水淬,研究其烧结致密化和显微组织的变化。结果表明,超细/纳米晶W-20Cu粉末在1000~1200℃烧结时发生迅速致密化。粉末压坯在1200℃烧结60min,其材料致密度已达到96.4%。1420℃烧结90min时致密度达到99%以上。1100~1420℃烧结时其烧结致密化活化能不断减小,从1100℃时的276.3kJ/mol减小到1420℃时的29.1kJ/mol。当温度低于1200℃时,W晶粒长大不明显,当温度超过1300℃时,W晶粒开始有明显长大。随温度的升高W晶粒发生显著球形化,1420℃烧结时发现其晶粒长大符合G3=kt的Ostwald机制,此时晶粒长大动力学系数K仅为0.024μm3/min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号