首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The adsorption of Acid Red 57 (AR57) onto surfactant-modified sepiolite was investigated in aqueous solution in a batch system with respect to contact time, pH and temperature. The surface modification of surfactant-modified sepiolite was controlled using the FTIR technique. The pseudo-first-order, pseudo-second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted very well the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 90 min, whereas diffusion is not only the rate controlling step. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The Freundlich model agrees with experimental data well. The activation energy, change of free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of AR57 onto surfactant-modified sepiolite. The results indicate that surfactant-modified sepiolite could be employed as low-cost material for the removal of textile dyes from effluents.  相似文献   

2.
The adsorption of Acid Red 57 (AR57) onto calcined-alunite was examined in aqueous solution in a batch system with respect to contact time, pH and temperature. The first-order, pseudo-second-order kinetic and the intraparticle diffusion models were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted very well the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 90 min. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The equilibrium data are successfully fitted to the Langmuir adsorption isotherm. The Langmuir isotherm constant, K(L), was used to evaluate the changes of free energy, enthalpy and entropy of adsorption for the adsorption of AR57 onto calcined-alunite. The results indicate that calcined-alunite could be employed as low-cost material for the removal of acid dyes from textile effluents.  相似文献   

3.
Adsorption of copper ions onto Capsicum annuum (red pepper) seeds was investigated with the variation in the parameters of pH, contact time, adsorbent and copper(II) concentrations and temperature. The nature of the possible adsorbent and metal ion interactions was examined by the FTIR technique. The copper(II) adsorption equilibrium was attained within 60 min. Adsorption of copper(II) ions onto C. annuum seeds followed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Maximum adsorption capacity (q(max)) of copper(II) ions onto red pepper seeds was 4.47x10(-4) molg(-1) at 50 degrees C. Three kinetic models including the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were selected to follow the adsorption process. Kinetic parameters such as rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was indicated that the adsorption of copper(II) ions onto C. annuum seeds could be described by the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 60 min, but diffusion is not only the rate controlling step. Thermodynamics parameters such as the change of free energy, enthalpy and entropy were also evaluated for the adsorption of copper(II) ions onto C. annuum seeds.  相似文献   

4.
The adsorption of Disperse Orange 25 (3-[N-ethyl-4-(4-nitrophenylazo) phenylamino] propionitrile) onto activated carbon was investigated in a batch system with respect to contact time, carbon dosage, pH and temperature from aqueous solutions. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The Langmuir isotherm model agrees with the experimental data well. Maximum adsorption capacity (qmax) of Disperse Orange 25 onto adsorbent was 118.93 mg g−1 at 20 °C. The first-order, pseudo-second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated as well. The experimental data fitted very well to pseudo-second-order kinetic model. The results show that activated carbon prepared from Euphorbia rigida by sulfuric acid chemical activation could be employed as low-cost material to compare with commercial activated carbon for the removal of disperse dyes from effluents.  相似文献   

5.
Nitrate removal from aqueous solution by adsorption onto various materials   总被引:10,自引:0,他引:10  
In this study sepiolite, sepiolite activated by HCl, slag and powdered activated carbon were used as adsorbent with a particle size was between 71 and 80 microm (200-170 mesh). NaNO3 solution (100 mg/l) was used in batch adsorption experiments for nitrate removal. First kinetic studies were carried out and it was determined that slag was not effective for nitrate removal, then contact time, pH and adsorbent dosage effects on nitrate removal by adsorption were investigated using other adsorbents except slag. The equilibrium time was found to be 30, 45, 5 min for sepiolite, powdered activated carbon and activated sepiolite, respectively. The most effective pH value for nitrate removal was 2 for powdered activated carbon. pH value did not affect nitrate removal significantly for other adsorbents. Adsorbent dosages were varied from 5 to 20 g/l solutions. An increase in adsorbent dosage increased the percent removal of nitrate. A series of isotherm studies were undertaken and the data evaluated for compliance with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanisms, three simplified kinetic models, i.e., first-, second-order and intraparticle diffusion were tested. Adsorption followed second-order rate kinetics. The correlation coefficients for second order kinetic model are greater than 0.996. Experimental data show that sepiolite activated by HCl was effective for nitrate removal.  相似文献   

6.
The adsorption of Pb(II) onto Turkish (Bandirma region) kaolinite clay was examined in aqueous solution with respect to the pH, adsorbent dosage, contact time, and temperature. The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms and both models fitted well. The monolayer adsorption capacity was found as 31.75 mg/g at pH 5 and 20 degrees C. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (13.78 kJ/mol) indicated that the adsorption of Pb(II) onto kaolinite clay may be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, free energy (deltaG degrees ), enthalpy (deltaH degrees ) and entropy (deltaS degrees ) of adsorption were also calculated. These parameters showed that the adsorption of Pb(II) onto kaolinite clay was feasible, spontaneous and exothermic process in nature. Furthermore, the Lagergren-first-order, pseudo-second-order and the intraparticle diffusion models were used to describe the kinetic data. The experimental data fitted well the pseudo-second-order kinetics.  相似文献   

7.
Dyes are usually presents in the effluent water of many industries, such as textiles, leather, paper, printing and cosmetics. The effectiveness of dye adsorption from wastewater has made to get alternative different low cost adsorbent to other expensive treatment methods. The adsorption of methylene blue onto dehydrated wheat bran (DWB) was investigated at temperatures (25-45 degrees C), initial methylene blue (MB) concentrations (100-500 mg L(-1)) and adsorbent dosage at the given contact time for the removal of dye. The optimum adsorption conditions were found to be as medium pH of 2.5 and at the temperature of 45 degrees C for the varying adsorbent dosage. Equilibrium isotherms were analysed by Freundlich, Langmuir and Redlich-Peterson isotherm equations using correlation coefficients. Adsorption data were well described by the Langmuir model, although they could be modelled by the Freundlich and Redlich-Peterson model as well. The pseudo-first order and pseudo-second order kinetic models were applied to test the experimental data. It was concluded that the pseudo-second order kinetic model provided better correlation of the experimental data rather than the pseudo-first order model. The mass transfer model as intraparticle diffusion was applied to the experimental data to examine the mechanisms of rate controlling step. It was found that at the higher initial MB concentration, intraparticle diffusion is becoming significant controlling step. The thermodynamic constants of the adsorption process were also evaluated by using the Langmuir constants related to the equilibrium of adsorption at temperatures varied in the range 25-55 degrees C.  相似文献   

8.
In this study, the biosorption of Acid Blue 290 and Acid Blue 324 on Spirogyra rhizopus, a green algae growing on fresh water, was studied with respect to initial pH, temperature, initial dye concentration and biosorbent concentration. The optimum initial pH and temperature values for AB 290 and AB 324 biosorption were found to be 2.0, 30 degrees C and 3.0, 25 degrees C, respectively. It was observed that the adsorbed AB 290 and AB 324 amounts increased with increasing the initial dye concentration up to 1500 and 750 mg/L, respectively. The Langmuir, Freundlich, Redlich-Peterson and Koble-Corrigan isotherm models were applied to the experimental equilibrium data and the isotherm constants were determined by using Polymath 4.1 software. The monolayer coverage capacities of S. rhizopus for AB 290 and AB 324 dyes were found as 1356.6 mg/g and 367.0 mg/g, respectively. The intraparticle diffusion model and the pseudo-second order kinetic model were applied to the experimental data in order to describe the removal mechanism of these acidic dyes by S. rhizopus. The pseudo-second order kinetic model described very well the biosorption kinetics of AB 290 and AB 324 dyes. Thermodynamic studies showed that the biosorption of AB 290 and AB 324 on S. rhizopus was exothermic in nature.  相似文献   

9.
The adsorption of Copper(II) onto Amberjet 1500H and Ambersep 252H synthetic ion exchange resins have been studied. All the studies were conducted by a batch method to determine equilibrium and kinetic studies at the solution pH of 5.8 in the concentration ranges from 10 to 20mg/L. The experimental isotherm data were analyzed using the Freundlich, Langmuir, Redlich Perterson, Temkin, Dubinin-Radushkevich equations. Correlation co-efficient was determined for each isotherm analysis. Error functions have been used to determine the alternative single component parameters by non-linear regression due to the bias in using the correlation coefficient resulting from linearisation. From the error analysis the EABS error function provides the best parameters for the isotherm equation in this system. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The initial sorption rate, pseudo-first-order, pseudo-second-order and intraparticle diffusion rate constants for different initial concentrations were evaluated and discussed.  相似文献   

10.
The adsorption of Congo Red onto bentonite in a batch adsorber has been studied. Four kinetic models, the pseudo first- and second-order equations, the Elovich equation and the intraparticle diffusion equation, were selected to follow the adsorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and correlation coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of Congo Red onto bentonite could be described by the pseudo second-order equation. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. Adsorption of Congo Red onto bentonite followed the Langmuir isotherm. A single stage batch adsorber was designed for different adsorbent mass/treated effluent volume ratios using the Langmuir isotherm.  相似文献   

11.
In this study, adsorption of Cr(VI) onto the four low-cost biosorbents (Laminaria japonica, P. yezoensis Ueda, rice bran and wheat bran) was investigated depending on solution pH, contact time, adsorbent concentration and adsorption isotherms by employing batch adsorption technique. The adsorption capacities were significantly influenced by solution pH, with lower pH favoring higher Cr(VI) removal for various biosorbents. The ionic strength of NaCl was also observed to have a significant impact on the Cr(VI) adsorption due to the competition of Cl(-) in the aqueous solutions. The batch equilibrium data were correlated to Langmuir and Freundlich isotherms and the data fitted better to the Freundlich isotherm equation. The apparent thermodynamic parameters were calculated for each of the four biosorbents and the obtained numerical values showed that the Cr(VI) adsorption onto the various low-cost biosorbents is spontaneous, entropy-driven and endothermic processes. The batch kinetic data were correlated to the pseudo-first order and pseudo-second order models and the data fitted better to the pseudo-second order equation. An intraparticle diffusion model was applied to investigate the adsorption mechanisms. The adsorption capacities for various biosorbents studied in this work were inversely proportional to the adsorbent concentrations.  相似文献   

12.
The adsorption behavior of crystal violet (CV(+)) from aqueous solution onto raw (RB) and manganese oxide-modified (MMB) bentonite samples was investigated as a function of parameters such as initial CV(+) concentration, contact time and temperature. The Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption models were applied to describe the equilibrium isotherms. The Langmuir monolayer adsorption capacities of RB and MMB were estimated as 0.32 and 1.12 mmol/g, respectively. The mean adsorption energy derived from D-R isotherm for MMB showed that the type of adsorption of dye molecules on this material may be defined as chemical adsorption. The adsorption rate was fast and more than half of the adsorbed-CV(+) was removed in the first 55 min for RB and 5 min for MMB at the room temperature. The pseudo-first-order, pseudo-second-order kinetic and the intraparticle diffusion models were used to describe the kinetic data and rate constants were evaluated. The thermodynamic parameters such as DeltaH, DeltaS and DeltaG were found 117.41 kJ/mol, 41.50 J/(molK), -5.07 kJ/mol (RB) and 21.19 kJ/mol 98.34 J/(molK), -7.84 kJ/mol (MMB) at 295.15 K, respectively. The quite high adsorption capacity and high adsorption rate of MMB will provide an important advantage for using of this material in basic dye solution.  相似文献   

13.
The adsorption of Congo red (CR) into three new adsorbents including Palladium and silver nanoparticles loaded on activated carbon (Pd NPs-AC, Ag NPs-AC) and zinc oxide nanorods loaded on activated carbon (ZnO-NRs-AC) in a batch method has been studied following the optimization of effective variables including pH, amount of adsorbents and time. The experimental data was fitted to conventional kinetic models including the pseudo first-order and second-order Elovich and intraparticle diffusion model and based on calculated respective parameters such as rate constants, equilibrium adsorption capacities and correlation coefficients. It was found that for all adsorbents the removal process follows the pseudo second other kinetic model with involvement of interparticle diffusion model. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Tempkin and Dubinin and Radushkevich equations and it was found for all adsorbents that the removal process followed the Langmuir isotherm.  相似文献   

14.
The adsorption kinetics of a cationic dye, methylene blue (MB), onto the silica nano-sheets derived from vermiculite via acid leaching was investigated in aqueous solution in a batch system with respect to contact time, initial dye concentration, pH, and temperature. Experimental results have shown that increasing initial dye concentration favors the adsorption while the acidic pH and temperature go against the adsorption. Experimental data related to the adsorption of MB on the silica nano-sheets under different conditions were applied to the pseudo-first-order equation, the pseudo-second-order equation and the intraparticle diffusion equation, and the rate constants of first-order adsorption (k(1)), the rate constants of second-order adsorption (k(2)) and intraparticle diffusion rate constants (k(int)) were calculated, respectively. The experimental data fitted very well the pseudo-second-order kinetic model. The activation energy of system (E(a)) was calculated as 3.42 kJ/mol. The thermodynamics parameters of activation such as Gibbs free energy, enthalpy, entropy were also evaluated and found that DeltaG*, DeltaH*, and DeltaS* are 65.95 (71.63, 77.45)kJ/mol, 0.984 (0.776, 0.568)kJ/mol, and -0.222 (-0.223, -0.224)kJ/(Kmol) at 20 (45, 70) degrees C, respectively. The desorption of the dye on the silica nano-sheets using ethanol was also investigated primarily.  相似文献   

15.
In this study, the adsorption of trimethoprim (TMP) on montmorillonite KSF was studied under different conditions (pH, ionic strength, temperature). The results indicate that a pH value of 5.04 is optimum value for the adsorption of TMP on KSF. The adsorption kinetics was interpreted using pseudo-first-order kinetic model, pseudo-second-order kinetic model and intraparticle diffusion model. The pseudo-second-order model provides the best correlation with the experimental data of KSF adsorption. The adsorption data could be fitted with Freundlich, Langmuir and Dubinin-Radushkevich equation to find the characteristic parameters of each model. It was found that linear form of Langmuir isotherm seems to produce a better model than linear form of Freundlich equation. From the Langmuir and Freundlich equation, the adsorption capacity values raised as the solution temperature decreased. From DR isotherm, it was also determined that the type of adsorption can be considered as ion-exchange mechanism. Determination of the thermodynamic parameters DeltaH(0), DeltaS(0) and DeltaG(0) showed that adsorption was spontaneous and exothermic in nature. It was also added that adsorption of TMP by KSF may involve physical adsorption.  相似文献   

16.
The sorption of SPANDS from aqueous solution onto the macroporous polystyrene anion exchangers of weakly basic Amberlyst A-21 and strongly basic Amberlyst A-29 in a batch method was studied. The effect of initial dye concentration and phase contact time was considered to evaluate the sorption capacity of anion exchangers. Equilibrium data were attempted by various adsorption isotherms including the Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models. A comparison of kinetic models applied to the adsorption rate constants and equilibrium sorption capacities was made for the Lagergren first-order, pseudo second-order and Morris–Weber intraparticle diffusion kinetic models. The results showed that the adsorption isotherm is in the good agreement with the Langmuir equation and that the adsorption kinetics of SPADNS on both anion exchangers can be best described by the pseudo second-order model.  相似文献   

17.
Adsorbent (WA11Zn5) has been prepared from waste apricot by chemical activation with ZnCl(2). Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption and DFT plus software. Adsorption of three dyes, namely, Methylene Blue (MB), Malachite Green (MG), Crystal Violet (CV), onto activated carbon in aqueous solution was studied in a batch system with respect to contact time, temperature. The kinetics of adsorption of MB, MG and CV have been discussed using six kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the Elovich equation, the intraparticle diffusion model, the Bangham equation, the modified Freundlich equation. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the adsorption kinetics for three dyes. The dyes uptake process was found to be controlled by external mass transfer at earlier stages (before 5 min) and by intraparticle diffusion at later stages (after 5 min). Thermodynamic parameters, such as DeltaG, DeltaH and DeltaS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures and concentrations. The thermodynamics of dyes-WA11Zn5 system indicates endothermic process.  相似文献   

18.
Low cost removal of reactive dyes using wheat bran   总被引:1,自引:0,他引:1  
In this study, the adsorption of Reactive Blue 19 (RB 19), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145) onto wheat bran, generated as a by-product material from flour factory, was studied with respect to initial pH, temperature, initial dye concentration, adsorbent concentration and adsorbent size. The adsorption of RB 19, RR 195 and RY 145 onto wheat bran increased with increasing temperature and initial dye concentration while the adsorbed RB 19, RR 195 and RY 145 amounts decreased with increasing initial pH and adsorbent concentration. The Langmuir and Freundlich isotherm models were applied to the experimental equilibrium data depending on temperature and the isotherm constants were determined by using linear regression analysis. The monolayer covarage capacities of wheat bran for RB 19, RR 195 and RY 145 dyes were obtained as 117.6, 119.1 and 196.1 mg/g at 60 degrees C, respectively. It was observed that the reactive dye adsorption capacity of wheat bran decreased in the order of RY 145>RB 19>RR 195. The pseudo-second order kinetic and Weber-Morris models were applied to the experimental data and it was found that both the surface adsorption as well as intraparticle diffusion contributed to the actual adsorption processes of RB 19, RR 195 and RY 145. Regression coefficients (R2) for the pseudo-second order kinetic model were higher than 0.99. Thermodynamic studies showed that the adsorption of RB 19, RR 195 and RY 145 dyes onto wheat bran was endothermic in nature.  相似文献   

19.
The biosorption of a cationic dye, malachite green oxalate (MG) from aqueous solution onto an invasive marine alga Caulerpa racemosa var. cylindracea (CRC) was investigated at different temperatures (298, 308 and 318 K). The dye adsorption onto CRC was confirmed by FTIR analysis. Equilibrium data were analyzed using Freundlich, Langmuir and Dubinin-Radushkevich (DR) equations. All of the isotherm parameters were calculated. The Freundlich model gave a better conformity than Langmuir equation. The mean free energy values (E) from DR isotherm were also estimated. In order to clarify the sorption kinetic, the fit of pseudo-first-order kinetic model, second-order kinetic model and intraparticle diffusion model were investigated. It was obtained that the biosorption process followed the pseudo-second-order rate kinetics. From thermodynamic studies the free energy changes were found to be -7.078, -9.848 and -10.864 kJ mol(-1) for 298, 308 and 318 K, respectively. This implied the spontaneous nature of biosorption and the type of adsorption as physisorption. Activation energy value for MG sorption (E(a)) was found to be 37.14 kJ mol(-1). It could be also derived that this result supported physisorption as a type of adsorption.  相似文献   

20.
Methylene blue adsorption from aqueous solution by dehydrated peanut hull   总被引:4,自引:0,他引:4  
Dyes are colour organic compounds which can colorize the other substances. These substances usually presents in the effluent water of many industries, such as textiles, leather, paper, printing and cosmetics. To observe the potential feasibility of removing colour, peanut hull as an agricultural by-product was dehydrated with sulphuric acid (DPH) and used for adsorption of methylene blue (MB) from aqueous solution. The effects of various parameters such as initial methylene blue concentrations, temperatures and particle sizes were examined and optimal experimental conditions were determined. Adsorption data were well described by the Langmuir model, although they could be modelled by the Freundlich model as well. The adsorption process followed the pseudo-second order kinetic model. The mass transfer model as intraparticle diffusion was applied to the experimental data to examine the mechanisms of rate controlling step. It was found that at the higher initial MB concentration, intraparticle diffusion is becoming significant controlling step. The thermodynamic constants of the adsorption process were also evaluated by using the Langmuir constants related to the equilibrium of adsorption at different temperatures. The results in this study indicated that dehydrated peanut hull was a good adsorbent for removing methylene blue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号