首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用固相法和沉淀法合成了锂离子电池正极材料LiCo1/3Ni1/3Mn1/3O2探讨了合成温度、不同合成方法对材料的电化学性能的影响。利用充放电测试、循环伏安测试方法对合成的LiCo1/3Ni1/3Mn1/3O2进行了表征。结果表明,固相法900℃煅烧合成的材料电化学性能较好,沉淀法合成的材料电化学性能最好,以10.0mA/g的电流充放电,首次放电比容量为576.0C/g,循环50次后放电比容量仍保持501.5C/g。以100.0mA/g的大电流放电,放电比容量达到430.2C/g。  相似文献   

2.
梁剑武 《广东化工》2004,31(8):28-30
利用固相配位反应法合成稀土掺杂基锂离子电池正极材料LiMn1.995RE0.005O4(RE=Y,Nd,La),通过XRD、充放电测试等手段对材料的物相结构和电化学性能进行了研究.结果表明样品呈良好的尖晶石结构,在0.1mA/cm2和2.8-4.5V条件下恒流充放电,其首次充电容量为135mAh/g,放电容量为120mAh/g,循环可逆性好.  相似文献   

3.
采用固相法制备正极材料LiNi1/3Co1/3Mn1/3O2,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)/透射电镜(TEM)分析材料的结构和形貌特征,用LAND电池测试系统测试材料的电化学性能(充放电容量和循环性能等)。以LiOH.H2O,H2C2O4.2H2O,Ni(AC)2.4H2O,Co(AC)2.4H2O和Mn(AC)2.4H2O为原料,采用固相法在不同煅烧温度和煅烧时间下制备的层状正极材料LiNi1/3Co1/3Mn1/3O2具有典型的α-NaFeO2型层状结构特征,晶型结构完整。电化学性能测试结果表明,在850℃下保温15 h合成的正极材料电化学性能最优,在电流密度为120 mA/g、充放电电压在2.75~4.5 V时,经30次循环后放电比容量为163.5 mA.h/g,容量保持率为94%;50次循环后为157.2 mA.h/g,容量保持率为90.8%。  相似文献   

4.
低共熔混合锂盐合成LiNi_(0.8)Co_(0.2)O_2的研究   总被引:1,自引:0,他引:1  
常照荣  齐霞  吴锋  汤宏  孙东 《应用化工》2005,34(9):535-538
在空气气氛中,采用低共熔混合物L iNO3-L iOH为锂盐,制备出了锂离子电池正极材料L iN i0.8Co0.2O2。XRD分析表明:此工艺制得的正极材料具有完整的层状结构。电性能测试表明:在0.5 mA/cm2的充放电电流密度和2.7~4.2 V的电压范围内,L iN i0.8Co0.2O2首次放电比容量为145.2 mA.h/g,充放电库仑效率为83.8%;循环20次后,放电比容量为124.8 mA.h/g。该方法能制备出电化学性能良好的L iN i0.8Co0.2O2正极材料。  相似文献   

5.
采用共沉淀法和高温固相烧结相结合,合成了锂离子电池层状LiNi1/3Co1/3Mn1/3O2正极材料。采用ICP-AES元素分析方法、XRD和SEM对LiNi1/3Co1/3Mn1/3O2正极材料的成分、结构和形貌进行了表征。SEM测试结果表明,LiNi1/3Co1/3Mn1/3O2的形貌近似为球形,且颗粒分布均匀。并对其进行了充放电性能测试,结果表明:LiNi1/3Co1/3Mn1/3O2在25℃、2.5~4.6 V、0.1 C倍率下,首次放电容量达189.32 mAh.g-1(锂为负极),C/LiNi1/3Co1/3Mn1/3O2在1 C、2.75~4.2 V下,初始放电比容量为145.5 mAh/g,循环100次后,容量保持率为98.41%。是一种有发展前景的锂离子电池正极材料。  相似文献   

6.
《应用化工》2017,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.5~4.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

7.
采用溶胶-凝胶法合成了复合离子掺杂的尖晶石型锰酸锂Li1.02Mn1.92Al0.02Cr0.02Mg0.02O4-xFx(x=0,0.06)正极材料,并用XRD、CV、EIS和充放电测试等研究了其结构和电化学性能。结果表明,F与金属离子(Li、Al、Cr、Mg)的复合掺杂不仅提高了材料的比容量,还增加了尖晶石结构的稳定性,改善了材料的循环性能和可逆性能;充放电测试结果表明,Li1.02Mn1.92Al0.02Cr0.02Mg0.02O3.94F0.06具有优越的循环性能,常温下,以1/3C充放电的首次放电容量及50个循环后的容量保持率分别为117.9 mAh/g,96.9%。  相似文献   

8.
《应用化工》2022,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.54.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

9.
为了进一步提高普鲁士蓝的电化学性能,通过控制温度和添加剂,运用共沉淀法进行铁离子掺杂,成功合成了Na2CoxFeyFe(CN)6正极材料,并对其进行XRD、SEM、TG和电化学性能测试。结果表明,在0.1 C电流密度下,初始比容量由未掺杂时的125.3 mAh/g上升到164.6 mAh/g,达到理论容量的96.8%。经过100圈充放电循环后,仍保持83.1 mAh/g的高容量。在5 C大电流密度的充放电测试下,比容量也由未掺杂时的28.3 mAh/g上升到47.8 mAh/g。材料表现出了优异的电化学性能。  相似文献   

10.
采用干湿结合回收技术回收了废旧锌锰干电池中的锰,讨论了硝酸浓度对碳酸锰回收率的影响。将得到的碳酸锰作为锰源,采用溶胶凝胶法制备了三元正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。通过沉积法使氢氧化铝胶体沉积在材料表面对三元正极材料进行表面包覆改性。而且对所得产品进行了XRD、TEM表征和电化学性能检测。结果表明,少量包覆不会改变材料的层状结构,材料首次放电比容量达到152 m A·h/g,且提高了循环性能,循环充放电100次后,放电比容量为117.3 m A·h/g。  相似文献   

11.
为了改善Fe-Mn富锂正极材料较差的循环性能,简化合成工艺,采用柠檬酸为螯合剂,溶胶凝胶法合成富锂正极材料0.7Li2MnO3·0.3LiFe2/3Ni1/3O2,并研究不同煅烧温度对于材料性质的影响。研究结果表明,550℃为最佳的煅烧温度,颗粒尺寸在50nm左右,在40mA/g初始放电容量可以达到179mAh/g,经过40次循环容量为166mAh/g。  相似文献   

12.
采用同相法制备正极材料LiNi1/3Co1/3Mn1/3O2,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)/透射电镜(TEM)分析材料的结构和形貌特征,用LAND电池测试系统测试材料的电化学性能(充放电容量和循环性能等).以LiOH·H2O,H2C2O4·2H2O,Ni(AC)2·4H2O,Co(AC)2·4H2O和Mn(AC)2·4H2O为原料,采用固相法在不同煅烧温度和煅烧时间下制备的层状正极材料LiNi1/3Co1/3Mn1/3O2具有典型的α-NaFeO2型层状结构特征,晶型结构完整.电化学性能测试结果表明,在850℃下保温15 h合成的正极材料电化学性能最优,在电流密度为120 mA/g、充放电电压在2.75~4.5 V时,经30次循环后放电比容量为163.5 mA·h/g,容量保持率为94%;50次循环后为157.2 mA·h/g,容量保持率为90.8%.  相似文献   

13.
掺杂与表面包覆对尖晶石型LiMn2O4电化学性能的影响   总被引:1,自引:0,他引:1  
胡拥军  李义兵  吴四贵 《化工进展》2007,26(4):563-566,576
用固相法制备了Cr3 和F-同时掺杂的尖晶石型LiMn2O4正极材料,并对掺杂材料进行氧化铝表面包覆改性,用扫描电子显微镜和X射线衍射研究了材料的表面形貌和晶体结构,用充放电实验和交流阻抗技术测试了材料的电化学性能。结果表明:LiMn2O4在掺杂Cr3 和F-及表面包覆氧化铝后仍为尖晶石型结构,随掺杂和包覆量的增加,材料首次放电容量降低,但循环性能明显改善,其中未掺杂、掺杂量为0.10和表面包覆0.3%的氧化铝的材料室温首次放电容量分别为125.3 mA·h/g、117.5 mA·h/g和113.7 mA·h/g,循环25次后容量保持率分别为82.7%、91.5%和93.6%,而55℃下25次循环后放电容量及其保持率以表面包覆氧化铝的最佳,分别达到104.2 mA·h/g和92.1%。  相似文献   

14.
以V2O5、NH4H2PO4、Li2CO3、(CH3COO)2Mn.4H2O原料,以葡萄糖和抗坏血酸为复合还原剂及碳源,通过常温还原-低温烧结法制备锂离子电池正极材料Li3V(2-2x/3)Mnx(PO4)3/C(x=0,0.03,0.06,0.09,0.12)。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电测试对该正极材料的物相、结构、微观形貌以及电化学性能进行了表征。结果表明,Mn2+的掺杂对磷酸钒锂电化学性能的发挥影响很大,其中当锰掺杂量x=0.09时材料表现出最佳的电化学性能,0.2 C倍率条件下首次放电比容量131 mAh/g,循环50次后容量衰减仅为4.02%。  相似文献   

15.
Mg~(2+)、Zr~(4+)离子掺杂对Li_4Ti_5O_(12)电化学性能的影响   总被引:1,自引:0,他引:1  
以固相反应法合成了尖晶石型Li4Ti5O12电极材料,进行了金属离子掺杂以提高其导电性及综合性能,以适应用于大电流充放电的目的。采用XRD、室温恒流充放电循环、交流阻抗和循环伏安等测试手段,考察了A位掺杂Mg(Li4-xMgxTi5O12,x=0.15),B位掺杂Zr(Li4ZrxTi5-xO12,x=0.15)对Li4Ti5O12结构和电化学性能的影响。结果表明:掺杂少量的Mg2+、Zr4+未引起材料结构的变化,明显降低了Li4Ti5O12电荷转移阻抗,使导电性得到有效提高。0.1 C放电倍率下放电,未掺杂及掺杂Mg2+、Zr4+的Li4Ti5O12首次放电容量分别为159.8、144.9、161.2mAh/g,循环40次后,容量分别保持为113.8、130.6、133.6 mAh/g。与未掺杂的Li4Ti5O12相比,掺杂后的电极材料极化减小、循环容量及稳定性提高。  相似文献   

16.
齐美荣  邢春晓  陈世娟  吕乾  刘长久 《广东化工》2010,37(1):107-108,111
采用微乳液快速冷冻沉淀法制备出稀土La(Ⅲ)掺杂非晶态Ni(OH)2粉体材料,对样品粉体的微结构及形态进行了表征分析,同时将样品作为活性物质合成电极材料,组装成碱性MH-Ni模拟电池,测试其电化学性能。结果表明,掺杂6%La(Ⅲ)样品材料微结构无序性强,质子缺陷较多。将所制备的样品在80 mA/g恒电流充电5.5 h,40 mA/g恒电流放电,终止电压为1.0 V的充放电制度下,其放电平台达到1.256 V,放电比容量为317.1 mAh/g,充放电循环30次放电比容量衰减仅为3.943%,具有较好的电化学稳定性和循环可逆性。  相似文献   

17.
杨威  张海朗 《应用化工》2013,(10):1792-1796
采用溶胶-凝胶法合成了层状正极材料LiNi0.4Co0.2Mn0.4O2,XRD、SEM、EDS和电化学性能测试表明,850℃为最佳煅烧温度,在此温度下合成的材料具有ɑ-NaFeO2层状结构,结晶度最好,Ni、Co、Mn分布均匀。充放电测试在2.0~4.6 V,0.2 C的电流下,材料首次放电比容量为185.6 mAh/g,库伦效率为93.2%;经40次循环后,容量保持率为92.5%,且该材料具有优良的倍率性能。  相似文献   

18.
采用简便的溶胶凝胶法制备了V2O5/石墨烯复合电极材料。利用SEM、XRD、Raman和TGA表征了样品的微观结构,以V2O5/石墨烯复合材料和Li4Ti5O12分别作为正极和负极组装了V2O5/石墨烯 // Li4Ti5O12全电池。结果表明,该复合电极材料是含有0.55%(质量分数)石墨烯的片状正交相V2O5。电化学测试表明,与未复合石墨烯的纯V2O5样品相比,V2O5/石墨烯复合材料具有更高的储锂活性和优异的大电流放电性能。在200 mA/g的电流密度下,V2O5/石墨烯复合材料和纯V2O5样品的放电比容量分别为283 mAh/g和253 mAh/g;当电流密度增加到5 A/g时,V2O5/石墨烯复合材料依然保持有150 mAh/g的放电比容量,而纯V2O5样品的放电比容量仅为114 mAh/g;V2O5/石墨烯和纯V2O5电极的电荷传递电阻分别为142 Ω和293 Ω。V2O5/石墨烯 // Li4Ti5O12全电池测试结果表明,在1.0 ~2.5 V电压范围内,循环初期全电池正极材料的放电比容量从110 mAh/g衰减到96 mAh/g,随后又出现上升,循环100次后正极材料的放电比容量稳定在102 mAh/g,库伦效率接近100%,这表明该V2O5/石墨烯复合电极材料是一种非常有应用前景的锂离子电池电极活性材料。  相似文献   

19.
采用"熔融浸渍法"合成了Mg和F共掺杂的不同温度下的锂离子电池正极材料Li Mn2-xMgxO3.97F0.03(x=0.05,0.1);煅烧温度为700,750和800°C。通过XRD对样品进行测试,样品为单一尖晶石结构的物相;并用SEM测试,对样品进行了形貌研究。用所制备的材料作为正极材料组装了模拟锂离子电池;在室温下进行恒电流充-放电性能测试,测试条件为3.3~4.3 V和0.2mA/cm2电流密度。随着材料制备温度的升高,电池的初始放电容量有逐渐增加的趋势,但充放电循环的容量损失也逐渐增加;氟掺杂量一定,镁掺杂量较多时,对应温度下煅烧的样品的结晶程度较好,样品的电化学性能也较好。在800下°C样品Li Mn1.9Mg0.1O3.97F0.03初始容量高达108 mAh/g,60次充放电循环后,其容量保持率高达81%,具有优良的循环稳定性能。  相似文献   

20.
利用共沉淀法制备了锂离子电池正极材料Li1.2Mn0.6Ni0.2O2和Li1.2Mn0.588Ni0.196Co0.016O2,并利用XRD、SEM和充放电测试对其晶体结构、形貌和电化学性能进行了表征.XRD结果表明:掺杂钴材料后,材料的层状结构保持完整,阳离子混排程度降低.电化学性能测试结果表明:掺钴材料的首次充放电效率和倍率放电性能明显优于Li1.2Mn0.6Ni0.2O2,且表现出较优的循环性能,其1、2、5C放电比容量分别为230.3、215.6、155.6 mA·h/g,1 C下循环50次的容量保持率为90.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号