首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Pulsed-field gel electrophoresis and PCR techniques have been used to construct a NotI macrorestriction map of the obligate intracellular bacterium Coxiella burnetii Nine Mile. The size of the chromosome has been determined to be 2,103 kb comprising 29 NotI restriction fragments. The average resolution is 72.5 kb, or about 3. 5% of the genome. Experimental data support the presence of a linear chromosome. Published genes were localized on the physical map by Southern hybridization. One gene, recognized as transposable element, was found to be present in at least nine sites evenly distributed over the whole chromosome. There is only one copy of a 16S rRNA gene. The putative oriC has been located on a 27.5-kb NotI fragment. Gene organization upstream the oriC is almost identical to that of Pseudomonas putida and Bacillus subtilis, whereas gene organization downstream the oriC seems to be unique among bacteria. The physical map will be helpful in investigations of the great heterogeneity in restriction fragment length polymorphism patterns of different isolates and the great variation in genome size. The genetic map will help to determine whether gene order in different isolates is conserved.  相似文献   

2.
Physical maps of the six smallest chromosomes of Saccharomyces cerevisiae are presented. In order of increasing size, they are chromosomes I, VI, III, IX, V and VIII, comprising 2.49 megabase pairs of DNA. The maps are based on the analysis of an overlapping set of lambda and cosmid clones. Overlaps between adjacent clones were recognized by shared restriction fragments produced by the combined action of EcoRI and HindIII. The average spacing between mapped cleavage sites is 2.6 kb. Five of the six chromosomes were mapped from end to end without discontinuities; a single internal gap remains in the map of chromosome IX. The reported maps span an estimated 97% of the DNA on the six chromosomes; nearly all the missing segments are telomeric. The maps are fully cross-correlated with the previously published SfiI/NotI map of the yeast genome by A. J. Link and M. V. Olson. They have also been cross-correlated with the yeast genetic map at 51 loci.  相似文献   

3.
In an attempt to unify the genetic and biological research on Mycobacterium leprae, the aetiological agent of leprosy, a cosmid library was constructed and then ordered by a combination of fingerprinting and hybridization techniques. The genome of M. leprae is represented by four contigs of overlapping clones which, together, account for nearly 2.8Mb of DNA. Several arguments suggest that the gaps between the contigs are small in size and that virtually complete coverage of the chromosome has been obtained. All of the cloned M. leprae genes have been positioned on the contig maps together with the 29 copies of the dispersed repetitive element, RLEP. These have been classified into four groups on the basis of differences in their organization. Several key housekeeping genes were identified and mapped by hybridization with heterologous probes, and the current genome map of this uncultivable pathogen comprises 72 loci.  相似文献   

4.
The bacterial artificial chromosome (BAC) cloning system is capable of stably propagating large, complex DNA inserts in Escherichia coli. As part of the Mycobacterium tuberculosis H37Rv genome sequencing project, a BAC library was constructed in the pBeloBAC11 vector and used for genome mapping, confirmation of sequence assembly, and sequencing. The library contains about 5,000 BAC clones, with inserts ranging in size from 25 to 104 kb, representing theoretically a 70-fold coverage of the M. tuberculosis genome (4.4 Mb). A total of 840 sequences from the T7 and SP6 termini of 420 BACs were determined and compared to those of a partial genomic database. These sequences showed excellent correlation between the estimated sizes and positions of the BAC clones and the sizes and positions of previously sequenced cosmids and the resulting contigs. Many BAC clones represent linking clones between sequenced cosmids, allowing full coverage of the H37Rv chromosome, and they are now being shotgun sequenced in the framework of the H37Rv sequencing project. Also, no chimeric, deleted, or rearranged BAC clones were detected, which was of major importance for the correct mapping and assembly of the H37Rv sequence. The minimal overlapping set contains 68 unique BAC clones and spans the whole H37Rv chromosome with the exception of a single gap of approximately 150 kb. As a postgenomic application, the canonical BAC set was used in a comparative study to reveal chromosomal polymorphisms between M. tuberculosis, M. bovis, and M. bovis BCG Pasteur, and a novel 12.7-kb segment present in M. tuberculosis but absent from M. bovis and M. bovis BCG was characterized. This region contains a set of genes whose products show low similarity to proteins involved in polysaccharide biosynthesis. The H37Rv BAC library therefore provides us with a powerful tool both for the generation and confirmation of sequence data as well as for comparative genomics and other postgenomic applications. It represents a major resource for present and future M. tuberculosis research projects.  相似文献   

5.
A combined physical and genetic map of the Pseudomonas putida KT2440 genome was constructed from data obtained by pulsed-field gel electrophoresis techniques (PFGE) and Southern hybridization. Circular genome size was estimated at 6.0 Mb by adding the sizes of 19 SwaI, 9 PmeI, 6 PacI, and 6 I-CeuI fragments. A complete physical map was achieved by combining the results of (i) analysis of PFGE of the DNA fragments resulting from digestion of the whole genome with PmeI, SwaI, I-CeuI, and PacI as well as double digestion with combinations of these enzymes and (ii) Southern hybridization analysis of the whole wild-type genome digested with different enzymes and hybridized against a series of probes obtained as cloned genes from different pseudomonads of rRNA group I and Escherichia coli, as P. putida DNA obtained by PCR amplification based on sequences deposited at the GenBank database, and by labeling of macrorestriction fragments of the P. putida genome eluted from agarose gels. As an alternative, 10 random mini-Tn5-Km mutants of P. putida KT2440 were used as a source of DNA, and the band carrying the mini-Tn5 in each mutant was identified after PFGE of a series of complete chromosomal digestions and hybridization with the kanamycin resistance gene of the mini-Tn5 as a probe. We established a circular genome map with an average resolution of 160 kb. Among the 63 genes located on the genetic map were key markers such as oriC, 6 rrn loci (rnnA to -F), recA, ftsZ, rpoS, rpoD, rpoN, and gyrB; auxotrophic markers; and catabolic genes for the metabolism of aromatic compounds. The genetic map of P. putida KT2440 was compared to those of Pseudomonas aeruginosa PAO1 and Pseudomonas fluorescens SBW25. The chromosomal backbone revealed some similarity in gene clustering among the three pseudomonads but differences in physical organization, probably as a result of intraspecific rearrangements.  相似文献   

6.
Strategies to construct the physical map of the Trypanosoma cruzi nuclear genome have to capitalize on three main advantages of the parasite genome, namely (a) its small size, (b) the fact that all chromosomes can be defined, and many of them can be isolated by pulse field gel electrophoresis, and (c) the fact that simple Southern blots of electrophoretic karyotypes can be used to map sequence tagged sites and expressed sequence tags to chromosomal bands. A major drawback to cope with is the complexity of T. cruzi genetics, that hinders the construction of a comprehensive genetic map. As a first step towards physical mapping, we report the construction and partial characterization of a T. cruzi CL-Brener genomic library in yeast artificial chromosomes (YACs) that consists of 2,770 individual YACs with a mean insert size of 365 kb encompassing around 10 genomic equivalents. Two libraries in bacterial artificial chromosomes (BACs) have been constructed, BACI and BACII. Both libraries represent about three genome equivalents. A third BAC library (BAC III) is being constructed. YACs and BACs are invaluable tools for physical mapping. More generally, they have to be considered as a common resource for research in Chagas disease.  相似文献   

7.
The genomic organization of acidophilic chemolithotrophic bacteria belonging to the genus Thiobacillus, Thiomonas and Leptospirillum was studied using pulsed field gel electrophoresis techniques (PFGE). The electrophoretic analysis of intact DNA prepared from different strains showed that all have a circular chromosome, with sizes ranging from 1.9 Mb for Leptospirillum ferrooxidans ATCC 49879, the smallest genome for an acidophilic strict chemolithoautotrophic microorganism, to 3.8 Mb for Thiomonas cuprina DSM 5495, the largest in this study. The number of extrachromosomal elements present varied from none, as observed in several isolates of Leptospirillum ferrooxidan, to five in Thiobacillus thiooxidans ATCC 8085. The mixotroph Thiomonas cuprina DSM 5495 was found to have a linear 50 kb megaplasmid which was inducible when the bacteria was grown in chemolithotrophic conditions. Low-frequency restriction fragment analysis (LFRFA) of different acidophilic chemolithotrophs and related species was carried out by PFGE to determine macrorestriction patterns for rare cutters (SpeI, XbaI, SwaI, PmeI), which were then used for taxonomic identification (karyotyping), genome size determination, and generation of physical and genetic maps.  相似文献   

8.
A physical map of rice chromosome 5 was constructed with yeast artificial chromosome (YAC) clones along a high-resolution molecular linkage map carrying 118 DNA markers distributed over 123.7 cM of genomic DNA. YAC clones have been identified by colony and Southern hybridization for 105 restriction fragment length polymorphism (RFLP) markers and by polymerase chain reaction (PCR) screening for 8 sequence-tagged site (STS) markers and 5 randomly amplified polymorphic DNA (RAPD) markers. Of 458 YACs, 235 individual YACs with an average insert length of 350 kb were selected and ordered on chromosome 5 from the YAC library. Forty-eight contigs covering nearly 21 Mb were formed on the chromosome 5; the longest one was 6 cM and covered 1.5 Mb. The length covered with YAC clones corresponded to 62% of the total length, of chromosome 5. There were many multicopy sequences of expressed genes on chromosome 5. The distribution of many copies of these expressed gene sequences was determined by YAC Southern hybridization and is discussed. A physical map with these characteristics provides a powerful tool for elucidation of genome structure and extraction of useful genetic information in rice.  相似文献   

9.
Variants of the pulsed-field gel electrophoresis technique were used in conjunction with two-dimensional DNA gel electrophoresis (2-DDGE) to determine the ratio of physical to genetic distance in two genetically defined intervals on barley chromosome 1H.2-DDGE analysis demonstrated that two loci that define a 0.3 cM interval, as determined by hybridization with BCD249, reside on a single 450-kb MluI fragment. This result indicates a maximum ratio of physical to genetic distance in this interval of 1500 kb/cM as compared to 3.7-4.2 Mb/cM for the barley genome as a whole. High molecular weight (HMW) DNA restricted with NotI and probed sequentially with MWG068 and BCD249 yield diffuse bands at approximately 2.8 Mb and 3.0 Mb in the C.I. 16151 and C.I. 16155 parental lines, respectively. These results suggest the maximum ratio of physical to genetic distance in the interval defined by these probes is 7.8 Mb/cM. Unique HMW DNA restriction fragment length polymorphisms (RFLP) were attributed to the presence of recombination breakpoints. Data from the recombination breakpoint analysis were used to estimate a ratio of physical to genetic distance of 2.5 Mb/cM in the Xbcd249.2-Xmwg068 interval and 0.465 Mb/cM in the Xbcd249.1-Xbcd249.2 interval. Both physical linkage and recombination breakpoint analysis indicate the Xbcd249.1-Xbcd249.2 interval is approximately five-fold smaller, physically, than the Xbcd249.2-Xmwg068 interval.  相似文献   

10.
We constructed a rice Bacterial Artificial Chromosome (BAC) library from green leaf protoplasts of the cultivar Shimokita harboring the rice blast resistance gene Pi-ta. The average insert size of 155 kb and the library size of seven genome equivalents make it one of the most comprehensive BAC libraries available, and larger than many plant YAC libraries. The library clones were plated on seven high density membranes of microplate size, enabling efficient colony identification in colony hybridization experiments. Seven percent of clones carried chloroplast DNA. By probing with markers close to the blast resistance genes Pi-ta2(closely linked to Pi-ta) and Pi-b, respectively located in the centromeric region of chromosome 12 and near the telomeric end of chromosome 2, on average 2.2 +/- 1.3 and 8.0 +/- 2.6 BAC clones/marker were isolated. Differences in chromosomal structures may contribute to this wide variation in yield. A contig of about 800 kb, consisting of 19 clones, was constructed in the Pi-ta2 region. This region had a high frequency of repetitive sequences. To circumvent this difficulty, we devised a "two-step walking" method. The contig spanned a 300 kb region between markers located at 0 cM and 0.3 cM from Pi-ta. The ratio of physical to genetic distances (> 1,000 kb/cM) was more than three times larger than the average of rice (300 kb/cM). The low recombination rate and high frequency of repetitive sequences may also be related to the near centromeric character of this region. Fluorescent in situ hybridization (FISH) with a BAC clone from the Pi-b region yielded very clear signals on the long arm of chromosome 2, while a clone from the Pi-ta2 region showed various cross-hybridizing signals near the centromeric regions of all chromosomes.  相似文献   

11.
A variety of maps of the human genome have been constructed, including cloned DNA maps. We have isolated 40 of the 42 NotI sites that exist on the long arm of human chromosome 21, as NotI linking clones and constructed a complete NotI restriction map spanning the entire region. This map, which provides the most reliable ordering and distance estimation in the region from a pericentromeric locus to the terminus, demonstrates the usefulness of linking clone mapping for analysing human chromosomes.  相似文献   

12.
We have constructed a physical map of human chromosome 22q using bacterial artificial chromosome (BAC) clones. The map consists of 613 chromosome 22-specific BAC clones that have been localized and assembled into contigs using 452 landmarks, 346 of which were previously ordered and mapped to specific regions of the q arm of the chromosome by means of chromosome 22-specific yeast artificial chromosome clones. The BAC-based map provides immediate access to clones that are stable and convenient for direct genome analysis. The approach to rapidly developing marker-specific BAC contigs is relatively straightforward and can be extended to generate scaffold BAC contig maps of the rest of the chromosomes. These contigs will provide substrates for sequencing the entire human genome. We discuss how to efficiently close contig gaps using the end sequences of BAC clone inserts.  相似文献   

13.
We report the construction of a YAC library that provides 10-fold redundant coverage of the chicken genome. The library was made by transforming S. cerevisiae AB1380 with YAC constructs consisting of partially digested and size fractionated (>465 kb) EcoRI genomic fragments ligated to pCGS966 YAC vector arms. The primary library provides 8.5-fold redundant coverage and consists of 16,000 clones arrayed in duplicate 96-well microtiter plates and gridded on nylon membranes at high density (18,000 clones/484cm2). The average insert size, 634 kb, was derived from size fractionation of a random sample of 218 YACs. Hybridization of five unlinked chicken genes to colony blots revealed six or more positive clones. This is consistent with the theoretical expectation from average insert sizes and number of clones. A second collection of clones consists of a further 20,000 colonies, of which 20% contain inserts larger than 450 kb and 80% contain only coligated vector arms. We estimate that these clones provide a further 1.5-fold redundant coverage of the chicken genome; thus, the total collection of 36,000 clones provides 10-fold redundant coverage of the chicken genome. The library is intended as a resource for fine-scale analysis of the organization of the chicken genome and is presently being used to construct a contig map of chicken Chromosome (Chr) 16, which contains the MHC and nucleolar organizer.  相似文献   

14.
To generate sequence-ready templates for the gene-rich Xp11.23 region, we have constructed a 1.5-Mb bacterial artificial chromosome (BAC) contig spanning the interval between the DNA markers OATL1 and DXS255. The contig includes 28 BACs, ranging in size from 58 to 258 kb with an average size of 135 kb, which provide 2.5-fold coverage of the region. The BAC contig was constructed based entirely on the content of 40 DNA markers from a previously established YAC contig and 11 new markers developed from BAC-end DNA sequences, 4 of which were required to close gaps in the map. There was no evidence of rearrangement, instability, or chimerism in any of the BAC clones. The BAC cloning system appears to provide robust and total physical coverage of this gene-rich region with clones that are suitable for DNA sequencing.  相似文献   

15.
We have constructed a chromosome 13 somatic cell hybrid map using seven cell lines: PGMEA6, a hybrid containing the entire chromosome 13, and six hybrids containing various deletions of chromosome 13 (BARF7, PPF22, KBF11, KSF39, CF25, and CF27). We have mapped 80 markers that define 10 regions of chromosome 13 with respect to 10 breakpoints in the mapping panel; these regions range in size from 4 to 24 Mb, with an average size of 8 Mb. The 80 markers sublocalized on our mapping panel include 10 Alu-PCR clones, 6 of which were converted to sequence-tagged sites; 40 (CA)n repeat-containing clones, 27 of which are microsatellite PCR markers; 8 (AAAG)n repeat-containing PCR markers, 1 two-allele PCR marker, 4 genes or expressed sequences, and 17 anonymous DNA probes. This low-resolution physical map can be used as a backbone map for more refined physical mapping using radiation hybrids or yeast artificial chromosomes.  相似文献   

16.
Vibrio cholerae, the etiologic agent of the diarrheal disease cholera, is a Gram-negative bacterium that belongs to the gamma subdivision of the family Proteobacteriaceae. The physical map of the genome has been reported, and the genome has been described as a single 3.2-Mb chromosome [Majumder, R., et al. (1996) J. Bacteriol. 178, 1105-1112]. By using pulsed-field gel electrophoresis of genomic DNA immobilized in agarose plugs and digested with the restriction enzymes I-CeuI, SfiI, and NotI, we have also constructed the physical map of V. cholerae. Our analysis estimates the size of the genome at 4.0 Mb, 25% larger than the physical map reported by others. Our most notable finding is, however, that the V. cholerae chromosome appears to be not the single chromosome reported but two unique and separate circular megareplicons.  相似文献   

17.
A physical map of chromosome 7 of Candida albicans   总被引:1,自引:0,他引:1  
As part of the ongoing Candida albicans Genome Project, we have constructed a complete sequence-tagged site contig map of chromosome 7, using a library of 3840 clones made in fosmids to promote the stability of repeated DNA. The map was constructed by hybridizing markers to the library, to a blot of the electrophoretic karyotype, and to a blot of the pulsed-field separation of the SfiI restriction fragments of the genome. The map includes 149 fosmids and was constructed using 79 markers, of which 34 were shown to be genes via determination of function or comparison of the DNA sequence to the public databases. Twenty-five of these genes were identified for the first time. The absolute position of several markers was determined using random breakage mapping. Each of the homologues of chromosome 7 is approximately 1 Mb long; the two differ by about 20 kb. Each contains two major repeat sequences, oriented so that they form an inverted repeat separated by 370 kb of unique DNA. The repeated sequence CARE2/Rel2 is a subtelomeric repeat on chromosome 7 and possibly on the other chromosomes as well. Genes located on chromosome 7 in Candida are found on 12 different chromosomes in Saccharomyces cerevisiae.  相似文献   

18.
The high resolution complete physical maps of chromosomes VII and XV were constructed to form the basis for sequencing these chromosomes as part of the European systematic sequencing programme of the yeast genome, using a unique cosmid library from strain FY1679, and an original top-down mapping strategy involving I-Sce I chromosome fragmentation. A total of 138 and 196 cosmid clones were used to construct the maps for VII and XV, respectively, forming two unique contigs that cover the entirety of chromosomes (1091 kb each), except the telomeric repeats. Colinearity of the cosmid inserts with yeast DNA was verified, and the physical maps were eventually compared with the independently generated genetic maps.  相似文献   

19.
A restriction map of the entire Schizosaccharomyces pombe genome was constructed using two restriction enzymes (BamHI and PstI) that recognize 6 bp. The restriction map contains 420 minimally overlapping clones (miniset) and has 22 gaps. We located 126 genes, marker fragments of DNA (NotI and SfiI linking clones), and 36 transposable elements by hybridization to unique restriction fragments.  相似文献   

20.
Twenty-eight genetic loci have been physically mapped to specific large restriction fragments of the Streptococcus mutans GS-5 chromosome by hybridization with probes of cloned genes or, for transposon-generated amino acid auxotrophs, with probes for Tn916. In addition, restriction fragments generated by one low-frequency-cleavage enzyme were used as probes to identify overlapping fragments generated by other restriction enzymes. The approach allowed construction of a low resolution physical map of the S. mutans GS-5 genome using restriction enzymes ApaI (5'-GGGCC/C), SmaI (5'-CCC/GGG), and NotI (5'-GC/GGCCGC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号