首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Catalytic activities of synthesized solid base catalysts (alumina loaded with solution of different potassium compounds such as KI, KF, K2CO3, and KNO3 with the loading amount of 35 wt.%) were tested for the transesterification reaction of canola oil with methanol and ethanol in a batch reactor in a temperature range of 25–60°C and different feed ratios of methanol/oil between 6:1 and 18:1. Synthesized KF/Al2O3 solid base catalyst showed the highest activity in the transesterification of canola oil with methanol and gave much stabler methyl ester content during the reaction with the highest yield of 99.6% at the end of the eight-hour reaction time at 60°C, with a methanol/oil ratio of 15:1 and a catalyst amount of 3 wt.%. Formation of K2O phase and the formation of the surface Al-O-K groups by salt-support interactions were observed during the synthesis of the catalysts. Methanol was found to be much more reactive than ethanol in the transesterification reaction.  相似文献   

2.
Stakheev  A. Yu.  Gabrielsson  P.  Gekas  I.  Teleguina  N. S.  Bragina  G. O.  Tolkachev  N. N.  Baeva  G. N. 《Topics in Catalysis》2007,42(1-4):143-147
Pt/Al2O3 and Pt/BaO/Al2O3 catalysts (1 wt% Pt, 10 wt%BaO) were sulfated under conditions simulating a real NSR catalyst operation. Comparative TPR and XPS studies of sulfur removal from Pt/Al2O3 and Pt/BaO/Al2O3 catalysts indicate that the sulfur removal from Al2O3 surface precedes reductive decomposition of BaSO4 (250–400 °C). Barium sulfate decomposition started with further increase in desulfation temperature at the point of surface atomic ratio Ba:S = 1 (~450o). Simultaneously, an intensive formation of sulfide species on the catalyst surface was observed. Thermodynamic analysis of the desulfation process allows us to hypothesize that barium sulfide formation may hinder sulfur removal under reducing conditions.  相似文献   

3.
Four different Me/Al2O3 (Me = Na, Ba, Ca, and K) powder catalysts prepared by incipient-wetness impregnation, and a K/Al2O3-cordierite monolithic catalyst produced by the dipcoating technique were used for biodiesel production. The samples were characterized and studied in the transesterification of soybean oil with methanol at 120 °C and 500 rpm, with a alcohol/oil molar ratio = 32, and a catalyst load = 1 wt% for the powder catalyst and 0.5 wt% for the monolith. The Ca/Al2O3, Na/Al2O3 and K/Al2O3 powder catalysts reported a FAME (fatty acid methyl esters) formation of 94.7, 97.1, and 98.9% respectively after 6 h of reaction. On the other hand, Ba/Al2O3 showed little activity (7.6%). The leaching of the alkali and alkaline earth metal species during reaction was important, what indicates that the activity could be explained in terms of a homogeneous–heterogeneous catalyst effect. When the monolithic sample and the powder catalyst were compared (under identical reaction conditions), the production of FAME for the latter was 89.5–59.1% for the monolithic catalyst. After two consecutive runs, the monolithic catalyst presented a partial deactivation of 8% in the FAME yield. The present work shows that the use of monolithic catalysts in the transesterification of vegetable oils is a viable alternative.  相似文献   

4.
Al2O3–MgO mixed oxides prepared by a co-precipitation method have been used as supports for potassium-promoted iron catalysts for CO2 hydrogenation to hydrocarbons. The catalysts have been characterized by XRD, BET surface area, CO2 chemisorption, TPR and TPDC techniques. The CO2 conversion, the total hydrocarbon selectivity, the selectivities of C2–C4 olefins and C5+ hydrocarbons are found to increase with increase in MgO content upto 20 wt% in Fe–K/Al2O3–MgO catalysts and to decrease above this MgO content. The TPR profiles of the catalysts containing pure Al2O3 and higher (above 20 wt%) MgO content are observed to contain only two peaks, corresponding to the reduction of Fe2O3 to Fe0 through Fe3O4. However, the TPR profile of 20 wt% MgO catalyst exhibits three peaks, which indicate the formation of iron phase through FeO phase. The TPDC profiles show the formation of three types of carbide species on the catalysts during the reaction. These profiles are shifted towards high temperatures with increasing MgO content in the catalyst. The activities of the catalysts are correlated with physico-chemical characteristics of the catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
KF-impregnated nanoparticles of γ-Al2O3 were calcinated and used as heterogeneous catalysts for the transesterification of vegetable oil with methanol for the synthesis of biodiesel (fatty acid methyl esters, FAME). The ratio of KF to nano-γ-Al2O3, calcination temperature, molar ratio of methanol/oil, transesterification reaction temperature and time, and the concentration of the catalyst were used as the parameters of the study. A methyl ester yield of 97.7 ± 2.14% was obtained under the catalyst preparation and transesterification conditions of KF loading of 15 wt%, calcination temperature of 773 K, 8 h of reaction time at 338 K, and using 3 wt% catalysts and molar ratio of methanol/oil of 15:1. This relatively high conversion of vegetable oil to biodiesel is considered to be associated with the achieved relatively high basicity of the catalyst surface (1.68 mmol/g) and the high surface to volume ratio of the nanoparticles of γ-Al2O3.  相似文献   

6.
A simple liquid water treatment applied to fresh and thermally aged Pt(2 wt%)–BaO(20 wt%)/Al2O3 lean NO x trap catalysts at room temperature induces morphological and structural changes in the barium species as followed by XRD and TEM analysis. During the water treatment, liquid water sufficient to fill the catalyst pore volume is brought into contact with the samples. It was found that irrespective of the original barium chemical state (highly dispersed BaO or crystalline BaAl2O4), exposing the sample to this liquid water treatment promotes the formation of BaCO3 crystallites (about 15–25 nm of its size) without changing the Pt particle size. Such transformations of the barium species are found to significantly promote NO x uptake from 250 to 450 °C. The increase in the NO x uptake for the water-treated samples can be attributed to an enhanced Pt–Ba interaction through the redistribution of barium species. These results provide useful information for the regeneration of aged lean NO x trap catalysts since water is plentiful in the exhaust of diesel or lean-burn engines.  相似文献   

7.
Transesterification of palm kernel oil (PKO) and coconut oil (CCO) with methanol was investigated under a heterogeneous catalysis system. Various Al2O3-supported alkali and alkali earth metal oxides prepared via an impregnation method were applied as solid catalysts. The supported alkali metal catalysts, LiNO3/Al2O3, NaNO3/Al2O3 and KNO3/Al2O3, with active metal oxides formed at calcination temperatures of 450–550 °C, showed very high methyl ester (ME) content (>93%). XRF analysis suggests this is likely to be due to a homogeneous catalysis of dissoluted alkali oxides. On the other hand, Ca(NO3)2/Al2O3 calcined at 450 °C yielded the ME content as high as 94% with only a small loss of active oxides from the catalyst, whereas calcined Mg(NO3)2/Al2O3 catalyst possessed an inactive magnesium-aluminate phase, resulting in very low ME formation. At calcination temperatures of >650 °C, alkali metal- and alkali earth metal-aluminate compounds were formed. Whilst the water-soluble alkali metal aluminates formed over NaNO3/Al2O3 and KNO3/Al2O3 were catalytically active, the aluminate compounds on LiNO3/Al2O3 and Ca(NO3)2/Al2O3 are less soluble, giving very low ME content. The suitable conditions for heterogeneously catalyzed transesterification of PKO and CCO over Ca(NO3)2/Al2O3 are the methanol/oil molar ratio of 65, temperature of 60 °C and reaction time of 3 h, with 10 and 15–20% (w/w) catalyst to oil ratio for PKO and CCO, respectively. Some important physical and fuel properties of the resultant biodiesel products meet the standards of diesel fuel and biodiesel issued by Department of Energy Business, Ministry of Energy, Thailand.  相似文献   

8.
Kaolin clay material was loaded with potassium carbonate by impregnation method as a novel, effective, and economically heterogeneous catalyst for biodiesel production of sunflower oil via the transesterification reaction. The structural and chemical properties of the produced catalysts were characterized through several analyses including the X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and Brunauer–Emmett–Teller specific surface area. These revealed the best catalyst for the investigated reaction among different ones prepared based upon various impregnation extent of the potassium carbonate. The influence of this parameter was examined through a comparison of the catalytic activity of differently produced catalysts. The impregnation amount of 20 wt% K2CO3 upon the kaolin achieved the highest catalytic activity attributed to its highest basicity. To expand upon the efficiency of transesterification, such reaction parameters including the molar ratio between methanol and oil, reactor loading of the catalyst, and time duration of the reaction were optimized. The highest yield of biodiesel over the K2O/kaolin catalyst was around 95.3 ± 1.2%, which was achieved using the kaolin support impregnated with 20 wt% of K2CO3 under optimum reaction conditions of the catalyst, reactor loading of 5 wt%, reaction temperature of 65 °C, methanol:oil molar ratio of 6:1, and reaction duration time of 4 hours. Ultimately, this optimized catalyst was demonstrated to successfully withstand the aforementioned optimum criteria up to five consecutive reaction cycles while experiencing a rather negligible loss of about 10% of its activity.  相似文献   

9.
Co/Al2O3 and Co/Al2O3–BaO catalysts with low cobalt loading (0.1, 0.3 and 1 wt%) for the selective catalytic reduction (SCR) of NO x by C3H6 were prepared. The distribution of cobalt species was investigated by UV–vis diffuse reflectance spectroscopy and by H2-TPR in order to identify the active cobalt species in hydrocarbons (HC)-selective catalytic reduction (SCR). It was found that the nature of cobalt species strongly depends on the cobalt loading as well as on the properties of the support. The barium addition to the alumina slows down solid state diffusion processes, improving the thermal stability of the support and preventing diffusion of cobalt into the bulk. Highly dispersed surface Co2+ species over alumina were identified as active sites in the NO-SCR process. Accordingly, a high concentration of surface Co2+ sites in Co 1 wt%/Al2O3 improves the catalytic performance in NO-SCR, the long term stability as well as the water tolerance. On the contrary, the formation of Co3O4 particles in Co 1 wt%/Al2O3–BaO promotes the propylene oxidation by oxygen, decreasing the activity and selectivity of the catalyst in NO reduction.  相似文献   

10.
The heterogeneous base catalyst, γ-Al2O3 loaded with KOH and K (K/KOH/γ-Al2O3) was first prepared and used in the transesterification of rapeseed oil with methanol to produce biodiesel. The prepared catalyst was characterized by X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller method, infrared spectroscopy and X-ray photoelectron spectroscopy. It was found that when γ-Al2O3 is loaded with KOH and K, the Al–O–K species is produced, resulting in an increase in the catalytic activity. The impacts of catalyst preparation conditions on the catalytic activities of K/KOH/γ-Al2O3 were investigated. The results demonstrate that the catalyst K/KOH/γ-Al2O3 has high catalytic activity when the added amounts of KOH and K are 20 and 7.5 wt% respectively. The transesterification of rapeseed oil to biodiesel with the prepared heterogeneous base catalyst was optimized. It was found that the yield of biodiesel can reach as high as 84.52% after 1 h reaction at 60°C, with a 9:1 molar ratio of methanol to oil, a catalyst amount of 4 wt%, and a stirring rate of 270 g.  相似文献   

11.
The aim of this study was to analyse the catalytic performance of several heterogeneous catalysts in the transesterification of sunflower oil with methanol. In order to characterize the different catalysts, nitrogen adsorption/desorption and CO2 temperature programmed desorption were used. The transesterification of sunflower oil was carried out using three different zeolites: mordenite, beta and X, to determine the influence of the kind of zeolite on the methyl ester production. The influence of the metal incorporation technique was studied using both impregnation and ion-exchange methods. Also, the transesterification reaction was carried out using catalysts with different metal loading. Finally, zeolite X was agglomerated with a binder, sodium bentonite, to study how the presence of a binder could change the catalytic performance of the zeolite. A methyl ester content of 93.5 and 95.1 wt% was obtained at 60 °C employing zeolite X with or without sodium bentonite, respectively. All biodiesel synthesized were characterized using the standard UNE-EN 14214. A complete deactivation study was carried out in order to check the sodium leaching from the catalyst. The results supported the hypothesis of a homogeneous-like mechanism where the alkali methoxide species were leached out.  相似文献   

12.
CO2 reforming of CH4 was performed using Ni catalyst supported on La-hexaaluminate which has been an well-known material for high-temperature combustion. La-hexaaluminate was synthesized by sol-gel method at various conditions where different amount of Ni (5–20 wt%) was loaded. Ni/La-hexaaluminate experienced 72 h reaction and its catalytic activity was compared with that of Ni/Al2O3, Ni/La-hexaaluminate shows higher reforming activity and resistance to coke deposition compared to the Ni/Al2O3 model catalyst. Coke deposition increases proportionally to Ni content. Consequently, Ni(5)/La-hexaaluminate(700) is the most efficient catalyst among various Ni/La-hexaaluminate catalysts regarding the cost of Ni in Ni(X)/La-hexaaluminate catalysts. BET surface area, XRD, EA, TGA and TPO were performed for surface characterization. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

13.
This study consists of the optimization of the methyl ester yields produced via transesterification of palm oil using CaO/Al2O3 solid base catalyst. Response Surface Methodology (RSM) in combination with Central Composite Design (CCD) was used to optimize the operating parameters. Alcohol/oil molar ratio, catalyst content in the reaction medium and reaction temperature were chosen as the variables and the response selected was the amount of methyl ester yields. All the reactions were performed in a batch laboratory scale reactor for 5 h; the optimum reaction conditions obtained were approximately alcohol/oil molar ratio of 12:1, catalyst content of 6 wt.% and reaction temperature of 65 °C. The results from ICP-MS exhibited insignificant leaching of the CaO active species into the reaction medium and the reusability of the catalyst was successfully tested in two subsequent cycles. Under certain reaction conditions the glycerol obtained was almost colorless.  相似文献   

14.
CO2 reforming and the combined CO2 reforming and partial oxidation reaction of selected fuel compounds were studied on a commercial 15 wt% NiO/Al2O3 catalyst and a 0.25 wt% Rh/ZrO2 catalyst at 600–900 °C. Oxygen reduced the energy requirement and catalyst coking. Ethanol was a more suitable starting material than the hydrocarbons.  相似文献   

15.
The effects of thermal aging and H2O treatment on the physicochemical properties of BaO/Al2O3 (the NOx storage component in the lean NOx trap systems) were investigated by means of X-ray diffraction (XRD), BET, TEM/EDX and NO2 TPD. Thermal aging at 1000 °C for 10 h converted dispersed BaO/BaCO3 on Al2O3 into low surface area crystalline BaAl2O4. TEM/EDX and XRD analysis showed that H2O treatment at room temperature facilitated a dissolution/reprecipitation process, resulting in the formation of a highly crystalline BaCO3 phase segregated from the Al2O3 support. Crystalline BaCO3 was formed from conversion of both BaAl2O4 and a dispersed BaO/BaCO3 phase, initially present on the Al2O3 support material after calcinations at 1000 and 500 °C, respectively. Such a phase change proceeded rapidly for dispersed BaO/BaCO3/Al2O3 samples calcined at relatively low temperatures with large BaCO3 crystallites observed in XRD within 10 min after contacting the sample with water. Significantly, we also find that the change in barium phase occurs even at room temperature in an ambient atmosphere by contact of the sample with moisture in the air, although the rate is relatively slow. These phenomena imply that special care to prevent the water contact must be taken during catalyst synthesis/storage, and during realistic operation of Pt/BaO/Al2O3 NOx trap catalysts since both processes involve potential exposure of the material to CO2 and liquid and/or vapor H2O. Based on the results, a model that describes the behavior of Ba-containing species upon thermal aging and H2O treatment is proposed.  相似文献   

16.
SO x uptake, thermal regeneration and the reduction of SO x via H2(g) over ceria-promoted NSR catalysts were investigated. Sulfur poisoning and desulfation pathways of the complex BaO/Pt/CeO2/Al2O3 NSR system was investigated using a systematic approach where the functional sub-components such as Al2O3, CeO2/Al2O3, BaO/Al2O3, BaO/CeO2/Al2O3, and BaO/Pt/Al2O3 were studied in a comparative fashion. Incorporation of ceria significantly increases the S-uptake of Al2O3 and BaO/Al2O3 under both moderate and extreme S-poisoning conditions. Under moderate S-poisoning conditions, Pt sites seem to be the critical species for SO x oxidation and SO x storage, where BaO/Pt/Al2O3 and BaO/Pt/CeO2/Al2O3 catalysts reveal a comparable extent of sulfation. After extreme S-poisoning due to the deactivation of most of the Pt sites, ceria domains are the main SO x storage sites on the BaO/Pt/CeO2/Al2O3 surface. Thus, under these conditions, BaO/Pt/CeO2/Al2O3 surface stores more sulfur than that of BaO/Pt/Al2O3. BaO/Pt/CeO2/Al2O3 reveals a significantly improved thermal regeneration behavior in vacuum with respect to the conventional BaO/Pt/Al2O3 catalyst. Ceria promotion remarkably enhances the SO x reduction with H2(g).  相似文献   

17.
The catalytic properties of Ni/Al2O3 composites supported on ceramic cordierite honeycomb monoliths in oxidative methane reforming are reported. The prereduced catalyst has been tested in a flow reactor using reaction mixtures of the following compositions: in methane oxidation, 2–6% CH4, 2–9% O2, Ar; in carbon dioxide and oxidative carbon dioxide reforming of methane, 2–6% CH4, 6–12% CO2, and 0–4% O2, and Ar. Physicochemical studies include the monitoring of the formation and oxidation of carbon, the strength of the Ni-O bond, and the phase composition of the catalyst. The structured Ni-Al2O3 catalysts are much more productive in the carbon dioxide reforming of methane than conventional granular catalysts. The catalysts performance is made more stable by regulating the acid-base properties of their surface via the introduction of alkali metal (Na, K) oxides to retard the coking of the surface. Rare-earth metal oxides with a low redox potential (La2O3, CeO2) enhance the activity and stability of Ni-Al2O3/cordierite catalysts in the deep and partial oxidation and carbon dioxide reforming of methane. The carbon dioxide reforming of methane on the (NiO + La2O3 + Al2O3)/cordierite catalyst can be intensified by adding oxygen to the gas feed. This reduces the temperature necessary to reach a high methane conversion and does not exert any significant effect on the selectivity with respect to H2.  相似文献   

18.
In order to elucidate the effect of sodium on the activity of ZSM-5 supported metal oxides catalysts (ZnO–Al2O3/ZSM-5 and SnO–Al2O3/ZSM-5) for the transesterification of soybean oil with methanol, ZSM-5 supported metal oxides were prepared with and without sodium hydroxide by impregnation. The metal compositions of the ZSM-5 supported metal oxide catalysts and the metal concentrations dissolved from the catalysts to the methylester phase were measured by SEM-EDS and inductive coupled plasma spectroscopy, respectively. The catalytic activity of ZnO–Al2O3/ZSM-5 and SnO–Al2O3/ZSM-5 containing sodium did not originate from surface metal oxides sites, but from surface sodium sites or dissolved sodium leached from the catalyst surface.  相似文献   

19.
Preferential CO oxidation reaction has been carried out at a gas hourly space velocity of 46,129 h?1 over supported Pt catalysts prepared by an incipient wetness impregnation method. Al2O3, MgO-Al2O3 (MgO=30 wt% and 70 wt%) and MgO were employed as supports for the target reaction. 1 wt% Pt/Al2O3 catalyst exhibited very high performance (X CO >90% at 175 °C for 100 h) in the reformate gases containing CO2 under severe conditions. This result is mainly due to the highest Pt dispersion, easier reducibility of PtO x , and easier electron transfer of metallic Pt. In addition, 1 wt% Pt/Al2O3 catalyst was also tested in the reformate gases with both CO2 and H2O to evaluate under realistic condition.  相似文献   

20.
The effects of reaction gases including CO2 and H2O and temperature on the selective low-temperature oxidation of CO were studied in hydrogen rich streams using a flow micro-reactor packed with a Pt–SnO2/Al2O3 sol–gel catalyst that was initially designed and optimized for operation in the absence of CO2 and H2O. 100% CO conversion was achieved over the 1 wt% Pt–3 wt% SnO2/Al2O3 catalyst at 110 °C using a feed composition of 1.0% CO, 1.5% O2, 25% CO2, 10% H2O, 58% H2 and He as balance at a space velocity of 24,000 cm3/(g h). CO2 in the feed was found to decrease CO conversion significantly while the presence of H2O in the feed increased CO conversion, balancing the effect of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号