首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental investigations on impinging diffusion flames mixing with inert gas were conducted. The combustion results and temperature measurements show that the non-reactive gas might dilute the local fuel concentration in the diffusion process. The shape of the column flame was symmetrical due to the flame stretch force. The results showed that a conical flame was changed by the addition of inert gas to the pure methane fuel. The weakening of the stretch boundary enhanced the mixing rate between the fuel and oxidizer, which would improve the fluctuation phenomenon. The impinging flame became shorter and bluer so the combustor size can be reduced. Nitrogen gas has the advantage that we can visualize the impinging mechanism with different gases in the impinging flame. The color in the mixing plane becomes blue and transparent. The penetration length is about 8 mm near the impinging point for Re=145.  相似文献   

2.
The flame type studied in this paper is a circumferential-fuel – jet inverse diffusion flame, and the fuel is liquefied petroleum gas enriched with hydrogen gas. Fuel lean flame stability limit regarding to the volumetric percentage of hydrogen and the air jet Reynolds number was investigated. There were three flame stable-related limits examined: local extinction limit, restore limit, and complete extinction limit. Global Energy Consumption Rate of fuel, fuel jet velocity, and overall equivalence ratio of the air/fuel mixture at the three stable-related limits were presented. Experimental results indicate that with hydrogen addition, the inverse diffusion flame can sustain burning with a lower global energy than without it. The most significant stabilization effect was obtained with 30% hydrogen addition for complete extinction limit and 30%–90% for local extinction limit. The corresponding fuel jet velocity at complete extinction limit also decreases with hydrogen addition. However, fuel jet velocities at local extinction limit and restore limit increase significantly, when hydrogen percentage is larger than 70%. Air jet Reynolds number does not show notable influence on Global Energy Consumption Rate or fuel jet velocity at the three stability limits. In addition, overall equivalence ratio, which is an important parameter of inverse diffusion flame combustion dropping dramatically with air jet Reynolds number when it is less than 2000.  相似文献   

3.
We investigated experimentally the effects of a spatially non-uniform stretch rate on the flame temperature. A flame surface with a non-uniform stretch rate was formed by creating a wrinkled laminar premixed flame in a spatially periodic flow field of a lean propane/air mixture. The measured flame temperature was lower/higher than the adiabatic flame temperature at flame segments with positive/negative stretch rates. This was a result of the effects of flame stretch and preferential diffusion for Lewis number greater than unity. The flame temperature estimated using the conventional flame stretch theory, which is based on a uniform stretch rate along the flame surface, did not agree quantitatively with the measured temperature. Therefore, we revised the theory, taking into account heat transfer along the flame surface, and then produced estimates that agreed with the measured temperature. We found that the effect of flame stretch and preferential diffusion is changed along the flame surface which has spatially non-uniform stretch rate, causing a temperature gradient along the surface, which in turn transfers heat and changes the flame temperature. Thus, heat transfer along the flame surface is an important factor in estimating flame temperature. In addition, a second temperature gradient appears downstream just behind the flame, because the temperature of the burned gas is also non-uniform. Therefore, conductive heat transfer is believed to occur between the flame and the burned gas. The effect of the downstream heat transfer is not as large as that of the heat transfer along the flame surface.  相似文献   

4.
Cellular formation in non-premixed flames is experimentally studied in an opposed-flow tubular burner. This burner allows independent variation of the global stretch rate and overall flame curvature. In opposed-flow flames formed by 21.7% hydrogen diluted in carbon dioxide versus air, cells are formed near extinction with a low fuel Lewis number and a low initial mixture strength. Using an intensified CCD camera, the flame chemiluminescence is imaged to study cellular formation from the onset of cells to near extinction conditions. The experimental onset of cellular instability is found to be at or at a slightly lower Damköhler number than the numerically determined extinction limit based on a two-point boundary value solution of the tubular flame. For fuel Lewis numbers less than unity, concave curvature towards the fuel retards combustion and weakens the flame and convex curvature towards the fuel promotes combustion and strengthens the flame. In the cell formation process, the locally concave flame cell midsection is weakened and the locally convex flame cell ends are strengthened. With increasing stretch rate, the flame breaks into cells and the cell formation process continues until near-circular cells are formed with no concave midsection. Further increase in the stretch rate leads to cell extinction. With increasing stretch rate, the flame thickness at the cell midsection decreases similar to a planar opposed-flow flame while the flame thickness at the cell edges is unchanged and can even increase due to the strengthening effect of convex curvature at the flame edges toward the low Lewis number fuel. The results show the existence of cellular flames well beyond the two-point boundary value extinction limit and the importance of local flame curvature in the formation of flame cells.  相似文献   

5.
Combustion characteristics of natural gas – hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG–H2 mixture concentrations, varied from 100%NG to 50%NG-50% H2 by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO2 molar concentration by about 30% was achieved.  相似文献   

6.
双燃料发动机的燃烧模型   总被引:3,自引:0,他引:3  
针对双燃料发动机燃烧特性,建立了柴油喷雾扩散燃烧子模型和气体燃烧均质混合气火焰传播燃烧子模型,应用该模型研究了双燃料发动机燃烧机理,计算结果和实验结果相当吻合。计算表明:当引燃柴油比例较大时,双燃料发动机燃烧过程以喷雾混合控制燃烧为主,柴油喷雾扩散燃烧模型与实测较吻合;当柴油比例较小时,该过程以均质混合气火焰传播燃烧为主,均质混合气火焰传播燃烧模型与实测软吻合。计算结果表明,引燃柴油量对双燃料发动机性能影响较大,引燃柴油减少,着火滞燃期延长,缸内最大爆发压力升高。  相似文献   

7.
A single premixed edge-flame established in a counterflow field of a combustible mixture and an inert nitrogen was experimentally investigated by using twin rectangular burners which were misaligned by a few degrees. The stretch-rate gradient was quantitatively defined as a function of the angle between the two burners and the distance from the edge of the burner. The flame weakly curved at the edge toward the stagnation plane and the shape of the flame edge did not depend on the composition of the mixture. The response of edge-flames to changes in flow conditions, such as the equivalence ratio of the mixture or the injection velocity at the burner exit, was basically determined by the Damkohler number of the mixture. The ratio of the local stretch rate at the flame edge and the extinction stretch rate for a single planar flame with the same composition was slightly smaller than unity, though the extinction stretch rate for the planar flame was about half of that for the twin planar flame due to large heat conduction to the opposing inert gas. This ratio of stretch rates for the single edge-flame was larger than that for twin edge-flames in a previous work, and this result agreed with the previous theoretical analysis by Buckmaster et al. and the previous experimental results of Ronney et al. Moreover, the effect of the stretch-rate gradient on the characteristics of the edge-flame did not appear for the single edge-flame.  相似文献   

8.
In nonpremixed combustion, edge flames can form as a region of flame propagation or flame recession. Forwardly propagating edge flames, as occur in lifted flames, have a local gas velocity at the flame edge that is from unburned partially premixed fuel and air into the flame. These flames represent an ignition process, and permit the flame itself to either stabilize against an incoming gas stream or propagate into unburned fuel and air. Negative edge flames represent the opposite case of a local gas velocity from burned products through the flame edge. The negative edge flame represents a local extinction process, and occurs, for example, during vortex-induced extinction of a nonpremixed flame sheet. A technique for generating steady negative edge flames in a standard counterflow burner is presented, which permits detailed examination of their properties. A coannular counterflow burner is used to create a strain gradient that quenches a central diffusion flame. Unlike previous research on strain-induced flame edges, the axisymmetric flow field ensures gas flow from products through the edge. Measurements of the edge flame's sensitivity to global strain rates and fuel mixtures are presented, along with measurements of the edge flame structure using OH fluorescence and CH emission imaging.  相似文献   

9.
富氧空气/甲烷扩散燃烧的NO抑制机理的数值研究   总被引:3,自引:0,他引:3  
为了开发适用于富氧燃烧的NO抑制技术,以对向流扩散火焰这一扩散燃烧的典型形态为对象,利用所建立的基元反应动力学模型研究了燃料稀释(CO2为稀释剂)以及速度梯度的改变对富氧空气/甲烷扩散火焰中NO生成的影响.用CO2稀释燃料甲烷得到的计算结果表明,随着燃料中CO2浓度的增大,火焰结构和NO生成的机理发生了显著变化,NO排放指数EINO(Emission index of NO)单调减少.改变速度梯度发现,随着速度梯度的增加,热力型NO质量生成速率以及EINO快速下降.这些研究表明,用CO2稀释燃料以及增加速度梯度可以减少富氧火焰中NO的生成.  相似文献   

10.
In order to find out the respective influences of chemical reactivity and physical transport of hydrogen additive on nonpremixed flame, two fabricated hydrogen additions were introduced into nonpremixed methane/air flame modeling. Hydrogen addition was assumed as inert gas or partial reactivity fuel to respectively explore the kinetic reasons by the three aspects: the elementary reaction route, heat release, and physical diffusion of hydrogen addition. The analyses were implemented in terms of OH and H production. Results showed that, hydrogen addition can enhance OH and H production via elementary reactions, and causes flame reaction zone migration through the coupling interaction between the low-temperature heat enthalpy release and diffusion behavior of hydrogen addition. R84 (OH + H2=H + H2O) and R38 (H + O2=O + OH) are the most important elementary reactions related to OH and H production. The physical incentive of hydrogen addition can hardly work without the chemical effects of hydrogen addition.  相似文献   

11.
12.
A computational study is performed to investigate the effects of hydrogen addition on the fundamental characteristics of propagating spherical methane/air flames at different conditions. The emphasis is placed on the laminar flame speed and Markstein length of methane/hydrogen dual fuel. It is found that the laminar flame speed increases monotonically with hydrogen addition, while the Markstein length changes non-monotonically with hydrogen blending: it first decreases and then increases. Consequently, blending of hydrogen to methane/air and blending methane to hydrogen/air both destabilize the flame. Furthermore, the computed results are compared with measured data available in the literature. Comparison of the computed and measured laminar flame speeds shows good agreement. However, the measured Markstein length is shown to strongly depend on the flame radii range utilized for data processing and have very large uncertainty. It is found that the experimental results cannot correctly show the trend of Markstein length changing with the hydrogen blending level and pressure and hence are not reliable. Therefore, the computed Markstein length, which is accurate, should be used in combustion modeling to include the flame stretch effect on flame speed.  相似文献   

13.
In the present study, the effects of hydrogen enrichment of methane are investigated numerically from the diffusion flame structure and emissions aspect. Fluent code is utilised as the simulation tool. In the first part of the study, four experiments were conducted using natural gas as fuel. A non-premixed burner and a back-pressure boiler were utilised as the experimental setup. The natural gas fuel consumption rate was changed between 22 Nm3/h and 51 Nm3/h. After the experimental studies, the numerical simulations were performed. The non-premixed combustion model with the steady laminar flamelet model (SFM) approach was used for the calculations. The methane-air extinction mechanism was utilised for the calculation of the chemical species. The numerical results were verified with the experimental results in terms of the flue gas emissions and flue gas temperature values. In the second part of the study, four different hydrogen-enriched methane combustion cases were simulated using the same methane-air extinction mechanism, which included the hydrogen oxidation mechanism as a sub mechanism. The same energy input (432 kW) was supplied into the boiler for all the studied cases. The obtained results show that the hydrogen addition to methane significantly change the diffusion flame structure in the combustion chamber. The hydrogen-enriched flames become broader and shorter with respect to the pure methane flame. This provides better mixing of the reactants and combustion products in the flame regions due to the use of a back-pressure boiler. In this way, the maximum flame temperature values and thermal NO emissions are reduced in the combustion chamber, when the hydrogen addition ratio is less than 15% by mass. The maximum temperature value is calculated as 2030 K for the case with 15% hydrogen addition ratio by mass, while it is 2050 K for the case without hydrogen enrichment. Therefore, it is determined that the hydrogen-enriched methane combustion in a back-pressure combustion chamber has the potential of reducing both the carbon and thermal NO emissions.  相似文献   

14.
针对生物柴油与醇类混合燃料燃烧机理研究的需求,采用高速纹影光学诊断方法和定容燃烧弹系统试验研究了异丁醇/辛酸甲酯混合燃料的预混层流燃烧特性。测量了不同当量比和初始压力条件下的不同配比混合燃料—空气预混合气的层流燃烧火焰速度,火焰拉伸率以及马克斯坦长度。分析了燃烧初始条件及异丁醇掺混比例对混合燃料的无拉伸层流燃烧速度及火焰不稳定性的影响规律。结果表明:异丁醇/辛酸甲酯混合燃料的拉伸层流火焰传播速度和层流火焰燃烧速度随着当量比的增加先增加后减少,随着初始压力的增加而减小;马克斯坦长度随着当量比和初始压力的增加而减小;异丁醇掺混比例的增加加快了层流火焰燃烧速度,但使得火焰的不稳定性倾向增加。  相似文献   

15.
Natural gas is one of the most potential alternative fuel of clean combustion and anti-knocking property. However, slow-burning rate and obvious cyclic variations have become the major concerns for modern gas engines. Based on a high compression-ratio, optically accessible, single-cylinder spark-ignition engine, fundamental experiments were conducted to investigate the role of direct-injected hydrogen under from stoichiometric to lean combustion conditions. Synchronization measurement of in-cylinder pressure and optical flame imaging was conducted to analyze cycle-to-cycle variations, indicated thermal efficiency, and flame evolution. The results show that as the addition of direct-injected hydrogen, the cycle-to-cycle variations decrease and indicated thermal efficiency increases, with advanced combustion phase and shortened combustion duration. The combustion imaging indicates that the significant positive influence is from the direct-injected hydrogen, which promotes initial flame kernel formation and early flame propagation. Further, an empirical criterion for mass fraction burned combined with optical data was adopted for quantification and analysis of early flame evolution. It shows that the addition of direct-injected hydrogen mainly promotes the early-stage flame propagation, manifesting increased the burning rate and thermal efficiency. The results shall give useful information in the application of direct-injected hydrogen to improve natural gas engine performance while increasing flame speed and controlling cyclic variations.  相似文献   

16.
IntroductionThe inveshgations of enhancing combushonefficiency have been important for the past decade.Totally, these improvements were concentrated on theincrease of the flame-tUrbulence or mixing rate. Acousticand pulsation are two of the essentially enhancedmechanisms and have been used popularly to insert intothe flame stfLlctllfCs. However, the improvements by theacoustic energy are licited by the power of acousticgeneration. In contrast, the pulsation oscillation by thesolenoid valve m…  相似文献   

17.
The uncertainties associated with the extraction of laminar flame speeds through extrapolations from directly measured experimental data were assessed using one-dimensional direct numerical simulations with focus on the effects of molecular transport and thermal radiation loss. The simulations were carried out for counterflow and spherically expanding flames given that both configurations are used extensively for the determination of laminar flame speeds. The spherically expanding flames were modeled by performing high fidelity time integration of the mass, species, and energy conservation equations. The simulation results were treated as “data” for stretch rate ranges that are encountered in experiments and were used to perform extrapolations using formulas that have been derived based on asymptotic analyses. The extrapolation results were compared then against the known answers of the direct numerical simulations. The fuel diffusivity was varied in order to evaluate the flame response to stretch and to address reactant differential diffusion effects that cannot be captured based on Lewis number considerations. It was found that for large molecular weight hydrocarbons at fuel-rich conditions, the flame behavior is controlled by differential diffusion and that the extrapolation formulas can result in notable errors. Analysis of the computed flame structures revealed that differential diffusion modifies the fluxes of fuel and oxygen inside the flame and thus affect the reactivity as stretch increases. Radiation loss was found to affect notably the extracted laminar flame speed from spherically expanding flame experiments especially for slower flames, in agreement with recent similar studies. The effect of radiation could be eliminated however, by determining the displacement speed relative to the unburned gas. This can be achieved in experiments using high-speed particle image velocimetry to determine the flow velocity field within the few milliseconds duration of the experiment. In general, extrapolations were found to be unreliable under certain conditions, and it is proposed that the raw experimental data in either flame configurations are compared against results of direct numerical simulations in order to avoid potential falsifications of rate constants upon validation.  相似文献   

18.
Technical limits of high pressure and temperature measurements as well as hydrodynamic and thermo-diffusive instabilities appearing in such conditions prevent the acquisition of reliable results in term of burning velocities, restraining the domain of validity of current laminar flame speed correlations to few bars and hundreds of Kelvin. These limits are even more important when the reactivity of the considered fuel is high. For example, the high-explosive nature of pure hydrogen makes measurements even more tricky and explains why only few correlations are available to describe the laminar flame velocity of high hydrogen blended fuels as CH4-H2 mixtures. The motivation of this study is thereby to complement experimental measurements, by extracting laminar flame speeds and thicknesses from complex chemistry one-dimensional simulations of premixed laminar flames. A wide number of conditions are investigated to cover the whole operating range of common practical combustion systems such as piston engines, gas turbines, industrial burners, etc. Equivalence ratio is then varied from 0.6 to 1.3, hydrogen content in the fuel from 0 to 100%, residual burned gas mass ratio from 0 to 30%, temperature of the fresh mixtures from 300 to 950 K, and pressure from 0.1 to 11.0 MPa. Many chemical kinetics mechanisms are available to describe premixed combustion of CH4-H2 blends and several of them are tested in this work against an extended database of laminar flame speed measurements from the literature. The GRI 3.0 scheme is finally chosen. New laminar flame speed and thickness correlations are proposed in order to extend the domain of validity of experimental correlations to high proportions of hydrogen in the fuel, high residual burned gas mass ratios as well as high pressures and temperatures. A study of the H2 addition effect on combustion is also achieved to evaluate the main chemical processes governing the production of H atoms, a key contributor to the dumping of the laminar flame velocity.  相似文献   

19.
本研究的目的是揭示富氧燃烧过程中的氮氧化物生成机理,针对富氧火焰特性探讨NOx抑制机制机理。文中以对向流扩散火焰为对象,利用详细的基元反应动力学模型研究了燃料稀释对富氧空气/甲烷扩散火焰中氮氧化物生成的影响,稀释剂为N2或CO2。结果表明,随着燃料中稀释组分浓度的变化,火焰结构和NO生成的决定机理显著变化;同时发现,随稀释剂CO2浓度增大,NO的排放指数EINO(Emission Index of NO)单调减少,随稀释刺N2稀释时EINO存在最大值。  相似文献   

20.
燃料质量浓度分布在一定程度上影响混合气体的燃烧效率,能使燃气充分混合的同轴射流、旋片同轴、轴切结合、切向旋流等典型混合模式在航空发动机、燃气轮机及火箭发动机等先进燃烧技术应用中较为常见。因此,设计了甲烷/空气部分预混的燃烧实验装置,较为系统地实验研究了旋流数和轴向流速对混合气体在约束空间燃烧室内燃烧特性的影响。结果表明:对于有中心射流的混合结构,燃气轴向流速较低时产生黄色火焰,增大轴向流速,黄色火焰转为蓝色湍流火焰,且温度分布趋于均匀;纯切向旋流燃烧器的掺混效果较好,受燃气轴向流速的影响小,火焰结构稳定,均为蓝色火焰,温度轴/径向分布均匀且趋势一致,同当量比下燃烧产物中的污染物体积分数最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号