首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of recombinant human carboxy-terminal-truncated macrophage colony-stimulating factor expressed in CHO cells was investigated. The bioactive protein ([-32-153]M-CSF), expressed from a nucleotide sequence that encoded a signal peptide of 32 amino acids and N-terminal amino acids numbers 1-153, was heterogeneous in terms of molecular mass, as analyzed by SDS-PAGE, because of the presence of N-linked sugar moieties. The primary structure of the polypeptide was determined by sequence analysis and amino acid analysis of the fragments obtained from lysylendopeptidase digests of reduced and alkylated M-CSF, and from pepsin digests of the intact molecule. A sugar chain was located only at Asn-122 of the two putative sites of N-glycosylation that were present per subunit. The homodimeric structure appeared to have seven disulfide bonds, formed by inter- or intra-molecular linkages, since there were no free thiol groups in the molecule. The assignment of disulfide bonds by sequence analysis using peptide fragments indicated the combinations of Cys7-Cys90, Cys48-Cys139, and Cys102-Cys146. Gel-filtration analysis of Ser31[-32-153]M-CSF, in which the remaining Cys31 was replaced by Ser and which was expressed in COS cells, suggested that the mutein existed as a monomer. Our study shows that the disulfide-bond pairings of [-32-153]M-CSF that is expressed and post-translationally modified in mammalian cells are identical to those of Escherichia coli-derived [3-153]M-CSF with only one intermolecular disulfide bond, namely, Cys31-Cys31.  相似文献   

2.
3.
Grass pollen, especially of rye-grass (Lolium perenne). represents an important cause of type I allergy. Identification of IgE-binding (allergenic) epitopes of major grass pollen allergens is essential for understanding the molecular basis of interaction between allergens and human IgE antibodies and therefore facilitates the devising of safer and more effective diagnostic and immunotherapy reagents. The aim of this study was to identify the allergenic epitopes of Lol p 5, a major allergen of rye-grass pollen, immunodissect these epitopes further so that the amino acid residues critical for antibody binding can be determined and investigate the conservation and nature of these epitopes within the context of the natural grass pollen allergens. Peptides, 12-13 amino acid residues long and overlapping each other by 4 amino acid residues, based on the entire deduced amino acid sequence of the coding region of Lol p 5, were synthesised and assayed for IgE-binding. Two strong IgE-binding epitopes (Lol p 5 (49-60) and (265-276), referred to as peptides 7 and 34, respectively) were identified. These epitopes were further resolved by truncated peptides and amino acid replacement studies and the amino acid residues critical for IgE-binding determined (Lol p 5 (49-60) residue Lys57 and (265-276) residue Lys275). Sequences of these epitopes were conserved in related allergens and may form the conserved allergenic domains responsible for the cross-reactivity observed between pollen allergens of taxonomically related grasses. Furthermore, due to its strong IgE-reactivity, synthetic peptide Lol p 5 (265-276) was used to affinity-purify specific IgE antibodies which recognised proteins of other clinically important grass pollens. further indicating presence of allergenic cross-reactivity at the level of allergenic epitope. Moreover, Lol p 5 (265 276) demonstrated a strong capacity to inhibit IgE-binding to natural rye-grass pollen proteins highlighting the antibody accessibility to these sequences within the context of the natural allergens. Strong IgE-binding epitopes of Lol p 5 have been identified down to single critical amino acid residues and are shown to occur as linear or continuous domains in the natural conformation of natural Lol p 5 and other group 5 grass pollen allergens. The fact that such an allergenic synthetic epitope has the capacity to strongly inhibit IgE-binding to natural allergens highlight its potential for use as a candidate in future therapeutics to treat pollen-associated allergies.  相似文献   

4.
Botulinum neurotoxin (NT) serotype E is synthesized by Clostridium botulinum as an approximately 150-kDa single-chain polypeptide of 1252 amino acid residues of which 8 are Cys residues [Puolet et al. (1992); Biochem. Biophys. Res. Commun. 183, 107-113]. The posttranslational processing of the gene product removes only the initiating methionine. A very narrow segment of this 1251-residue-long mature protein--at one-third the distance from the N-terminus (between residues Lys 418 and Arg 421)--is highly sensitive to proteases, such as trypsin. The single-chain NT easily undergoes an exogenous posttranslational modification by trypsin; residues 419-421 (Gly-Ile-Arg) are excised. The proteolytically processed NT is a dichain protein in which Pro 1-Lys 418 constitute the approximately 50-kDa light chain, Lys 422-Lys 1251 constitute the approximately 100-kDa heavy chain; Cys 411-Cys 425 and Cys 1196-Cys 1237 form the interchain and intrachain disulfide bonds, respectively; the other four Cys residues at positions 25, 346, 941, and 1035 remain as free sulfhydryl groups. The approximately 150-kDa dichain NT, and separated light and heavy chains, were fragmented with CNBr and endoproteases (pepsin and clostripain); some of these fragments were carboxymethylated with iodoacetamide (with or without 14C label) before and after fragmentation. The fragments were separated and analyzed for amino acid compositions and sequences by Edman degradation to determine the complete covalent structure of the dichain type E NT. A total of 208 amino acid residues, i.e., 16.5% of the entire protein's sequence deduced from nucleotide sequence, was identified. Direct chemical identification of these amino acids was in complete agreement with that deduced from nucleotide sequence.  相似文献   

5.
Interleukin-7 (IL-7) is a proteinaceous biological response modifier that has a bioactive tertiary structure dependent on disulfide bond formation. Disulfide bond assignments in human (h)IL-7 are based upon the results of matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy and Cys to Ser mutational analyses. A gene encoding the hIL-7 was synthesized incorporating Escherichia coli codon usage bias and was used to express biologically active protein as determined by stimulation of precursor B-cell proliferation. MALDI mass spectroscopic analysis of trypsin-digested hIL-7 was performed and compared with the anticipated results of a simulated tryptic digestion. Many of the anticipated hIL-7 tryptic fragments were detected including one with a molecular mass equivalent to the sum of two polypeptides linked through a disulfide bond formed from Cys residues (Cys3 and Cys142). Subsequently, Cys to Ser substitution mutational analyses were performed. A hIL-7 variant with all six Cys substituted with Ser was found to be biologically inactive (EC50 > 1 x 10(-7) M). In contrast, a family of single disulfide bond-forming variants of hIL-7 were constructed by reintroducing Cys pairs (Cys3-Cys142, Cys35-Cys130, and Cys48-Cys93), and each could stimulate cell proliferation with an EC50 of 4 x 10(-9), 2 x 10(-8), and 2 x 10(-9) M, respectively. In single disulfide bond-forming mutants of hIL-7, the ability to stimulate cell proliferation was abolished in the presence of 2 mM dithiothreitol. The results presented strongly suggest that only a single disulfide bond is required for hIL-7 to form a tertiary structure capable of stimulating precursor B-cell proliferation.  相似文献   

6.
Leiurotoxin I (Lei-NH2), a toxin isolated from the venom of the scorpion Leiurus quinquestriatus hebraeus, is a blocker of the apamin-sensitive Ca(2+)-activated K+ channels. It is a 31-residue polypeptide cross-linked by three disulfide bridges which are presumably between Cys3-Cys21, Cys8-Cys26, and Cys12-Cys28. To investigate the role of these disulfides, analogs of Lei-NH2 lacking one disulfide bridge (i.e., [Abu3,21]Lei-NH2, [Abu8,26]Lei-NH2, and [Abu12,28]Lei-NH2) were chemically synthesized by selective replacement of each pair of half-cystines forming a bridge by two alpha-aminobutyrate (Abu) residues. The two disulfide pairings of the main folded form of the synthetic analogs were established by enzymatic proteolysis. They were as expected between Cys8-Cys26 and Cys12-Cys28 for [Abu3,21]Lei-NH2 but were unexpectedly between Cys3-Cys12 and Cys21-Cys28 for [Abu8,26]Lei-NH2 and between Cys3-Cys8 and Cys21-Cys26 for [Abu12,28]Lei-NH2. The synthetic peptides were tested in vitro for their capacity to compete with the binding of [125I]apamin to rat brain synaptosomes and in vivo for their neurotoxicity in mice. In both assays, [Abu3,21]Lei-NH2 exhibited full Lei-NH2-like activity whereas [Abu8,26]Lei-NH2 and [Abu12,28]-Lei-NH2 possessed only residual activities (< 2% native toxin activity). This suggests that disulfide bridge Cys3-Cys21 is not essential per se for high toxin activity. Circular dichroism (CD) spectroscopy of the three analogs showed that only [Abu3,21]Lei-NH2 exhibited a CD spectrum similar to that of Lei-NH2, suggesting they both adopt closely related conformations, in agreement with the pharmacological data. Structural models of the analogs were constructed on the basis of the disulfide pairing assignment and compared with that of Lei-NH2.  相似文献   

7.
The crucial step of folding of recombinant proteins presents serious challenges to obtaining the native structure. This problem is exemplified by insulin-like growth factor (IGF)-I which when refolded in vitro produces the native three-disulfide structure, an alternative structure with mispaired disulfide bonds and other isomeric forms. To investigate this phenomenon we have examined the refolding properties of an analog of IGF-I which contains a 13-amino acid N-terminal extension and a charge mutation at position 3 (Long-[Arg3]IGF-I). Unlike IGF-I, which yields 45% of the native structure and 24% of the alternative structure when refolded in vitro, Long-[Arg3]IGF-I yields 85% and 10% of these respective forms. To investigate the interactions that affect the refolding of Long-[Arg3]IGF-I and IGF-I, we acid-trapped folding intermediates and products for inclusion in a kinetic analysis of refolding. In addition to non-native intermediates, three native-like intermediates were identified, that appear to have a major role in the in vitro refolding pathway of Long-[Arg3]IGF-I; a single-disulfide Cys18-Cys61 intermediate, an intermediate with Cys18-Cys61 and Cys6-Cys48 disulfide bonds and another with Cys18-Cys61 and Cys47-Cys52 disulfide bonds. Furthermore, from our kinetic analysis we propose that the Cys18-Cys61, Cys6-Cys48 intermediate forms the native structure, not by the direct formation of the last (Cys47-Cys52) disulfide bond, but by rearrangement via the Cys18-Cys61 intermediate and a productive Cys18-Cys61, Cys47-Cys52 intermediate. In this pathway, the last disulfide bond to form involves Cys6 and Cys48. Finally, we apply this pathway to IGF-I and conclude that the divergence in the in vitro folding pathway of IGF-I is caused by non-native interactions involving Glu3 that stabilize the alternative structure.  相似文献   

8.
Peptidylglycine alpha-hydroxylating monooxygenase (PHM) is a copper, ascorbate, and molecular oxygen dependent enzyme that catalyzes the first step leading to the C-terminal amidation of glycine-extended peptides. The catalytic core of PHM (PHMcc), refined to residues 42-356 of the PHM protein, was expressed at high levels in CHO (DG44) (dhfr-) cells. PHMcc has 10 cysteine residues involved in 5 disulfide linkages. Endoprotease Lys-C digestion of purified PHMcc under nonreducing conditions cleaved the protein at Lys219, indicating that the protein consists of separable N- and C-terminal domains with internal disulfide linkages, that are connected by an exposed linker region. Disulfide-linked peptides generated by sequential CNBr and pepsin treatment of radiolabeled PHMcc were separated by reverse phase HPLC and identified by Edman degradation. Three disulfide linkages occur in the N-terminal domain (Cys47-Cys186, Cys81-Cys126, and Cys114-Cys131), along with three of the His residues critical to catalytic activity (His107, His108, and His172). Two disulfide linkages (Cys227-Cys334 and Cys293-Cys315) occur in the C-terminal domain, along with the remaining two essential His residues (His242, His244) and Met314, thought to be essential in binding one of the two nonequivalent copper atoms. Substitution of Tyr79 or Tyr318 with Phe increased the Km of PHM for its peptidylglycine substrate without affecting the Vmax. Replacement of Glu313 with Asp increased the Km 8-fold and decreased the kcat 7-fold, again identifying this region of the C-terminal domain as critical to catalytic activity. Taking into account information on the copper ligands in PHM, we propose a two-domain model with a copper site in each domain that allows spatial proximity between previously described copper ligands and residues identified as catalytically important.  相似文献   

9.
Rhodopsin contains two cysteines (Cys110 and Cys187) that are highly conserved among members of the G protein coupled receptor family and that form a disulfide bond connecting helixes 3 and 4 on the extracellular side of the protein. However, recent work on a rhodopsin mutant split in the cytoplasmic loop connecting helixes 3 and 4 has shown that the amino- and carboxy-terminal fragments of this split protein do not comigrate on nonreducing SDS-PAGE gels, suggesting that the native Cys110-Cys187 disulfide bond is not present in this mutant [Ridge et al. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 3204-3208; Yu et al. (1995) Biochemistry 34, 14963-14969]. We show here that the inability to observe the disulfide bond on SDS gels is the result of a disulfide bond exchange reaction which occurs when this split rhodopsin is denatured in preparation for SDS-PAGE. Cys185 reacts with the native disulfide, displacing Cys110 and forming a new disulfide with Cys187. If the sulfhydryl-specific reagent N-ethylmaleimide is included in the sample during preparation for electrophoresis or if Cys185 is changed to Ser, the two fragments do comigrate with full-length rhodopsin on SDS gels and, therefore, are connected by the native Cys110-Cys187 disulfide bond. In related experiments, we find no evidence that the Cys110-Cys187 disulfide bond is broken upon formation of the active intermediate metarhodopsin II.  相似文献   

10.
Lyophilized dimeric recombinant bovine growth hormone (r-bGH) produced through incubation of r-bGH at 37 degrees C and 96% relative humidity for 8 days was examined by Raman spectroscopy. The secondary structure of the dimeric material is comparable to that of nonincubated r-bGH, due to the high similarity of the amide I, III, and V vibrational envelopes of the two samples. The dimeric material exhibits disulfide stretching that is indicative of the presence of only one disulfide bond (Cys53-Cys164). No sulfhydryl S-H stretching vibrations are observed, suggesting that cysteines from the cleaved disulfide bridge (Cys181-Cys189) are bound to nonsulfur atoms. Either high humidity (96%) or mild heat (37 degrees C) alone will cleave only one disulfide bond, but the final products are different. Incubation at ambient temperature and high humidity leads to a significant secondary structural change, while mild heat at very low humidity does not alter r-bGH secondary structure. Spectral data for incubations solely in mild heat are consistent with r-bGH structures that have lost the small loop (Cys181-Cys189) disulfide bridge, while incubations under only high humidity conditions are compatible with what would be expected if the large loop (Cys53-Cys164) cystine link was broken. Mild heat and high humidity are both present in dimer formation, yet only the small loop bridge is severed. The data suggest that heat may be the primary factor in determining which cystine link is broken. More severe heating (75 degrees C) cleaves both cystines and alters both secondary and tertiary structure.  相似文献   

11.
We have investigated which region(s) of bovine insulin-like growth factor binding protein-2 (bIGFBP-2) interact with insulin-like growth factors (IGFs) using C-terminally truncated forms of bIGFBP-2. Initially to aid in mutant design, we defined the disulfide bonding pattern of bIGFBP-2 C-terminal region using enzymatic digestion. The pattern is Cys186-Cys220, Cys231-Cys242, and Cys244-Cys265. In addition, cyanogen bromide cleavage of bIGFBP-2 revealed that the N- and C-terminal cysteine-rich domains were not linked by disulfide bonds. Taking the disulfide bonding pattern into consideration, C-terminal truncation mutants were designed and expressed in COS-1 mammalian cells. Following IGF binding assays, a region between residues 222 and 236 was identified as important in IGF binding. Specifically, mutants truncated by 14, 36, and 48 residues from the C terminus bound IGFs to the same extent as wild type (WT) bIGFBP-2. Removal of 63 residues resulted in a greatly reduced (up to 80-fold) ability to bind IGF compared with WT bIGFBP-2. Interestingly this mutant lacked the IGF-II binding preference of WT bIGFBP-2. Residues 236-270 also appeared to play a role in determining IGF binding specificity as their removal resulted in mutants with higher IGF-II binding affinity.  相似文献   

12.
kappa-Bungarotoxin, a kappa-neurotoxin derived from the venom of the banded Krait, Bungarus multicinctus, is a homodimeric protein composed of subunits of 66 amino acid residues containing five disulfide bonds. kappa-Bungarotoxin is a potent, selective, and slowly reversible antagonist of alpha3 beta2 neuronal nicotinic acetylcholine receptors. kappa-Bungarotoxin is structurally related to the alpha-neurotoxins, such as alpha-bungarotoxin derived from the same snake, which are monomeric in solution and which effectively antagonize muscle type receptors (alpha1 beta1 gamma delta) and the homopentameric neuronal type receptors (alpha7, alpha8, and alpha9). Like the kappa-neurotoxins, the long alpha-neurotoxins contain the same five conserved disulfide bonds, while the short alpha-neurotoxins only contain four of the five. Systematic removal of single disulfide bonds in kappa-bungarotoxin by site-specific mutagenesis reveals a differential role for each of the disulfide bonds. Removal of either of the two disulfides connecting elements of the carboxy terminal loop of this toxin (Cys 46-Cys 58 and Cys 59-Cys 64) interferes with the ability of the toxin to fold. In contrast, removal of each of the other three disulfides does not interfere with the general folding of the toxin and yields molecules with biological activity. In fact, when either C3-C21 or C14-C42 are removed individually, no loss in biological activity is seen. However, removing both produces a polypeptide chain which fails to fold properly. Removal of the C27-C31 disulfide only reduces the activity of the toxin 46.6-fold. This disulfide may play a role in specific interaction of the toxin with specific neuronal receptors.  相似文献   

13.
A method for site-specific, nitrobenzyl-induced photochemical proteolysis of diverse proteins expressed in living cells has been developed based on the chemistry of the unnatural amino acid (2-nitrophenyl)glycine (Npg). Using the in vivo nonsense codon suppression method for incorporating unnatural amino acids into proteins expressed in Xenopus oocytes, Npg has been incorporated into two ion channels: the Drosophila Shaker B K+ channel and the nicotinic acetylcholine receptor. Functional studies in vivo show that irradiation of proteins containing an Npg residue does lead to peptide backbone cleavage at the site of the novel residue. Using this method, evidence is obtained for an essential functional role of the "signature" Cys128-Cys142 disulfide loop of the nAChR alpha subunit.  相似文献   

14.
From an Aspergillus fumigatus complementary deoxyribonucleic acid (cDNA) library displayed on phage surface, an allergen formally termed rAsp f 3 was cloned. The open-reading frame of the cloned gene for the allergen encodes a protein of 168 amino acids with a predicted molecular mass of 18.5 kD, showing 36% identity and 58% similarity to two peroxisomal membrane proteins of Candida boidinii. Recombinant Asp f 3 was expressed as a [His]6-tagged fusion protein in Escherichia coil at yields of 30 mg/L, and was purified by Ni(2+)-chelate chromatography. In an enzyme-linked immunosorbent assay (ELISA), serum IgE antibody reactivity to rAsp f 3 could be detected in 72% of 89 individuals sensitized to A. fumigatus, demonstrating that the protein represents a major allergen of the mold. IgE specific to rAsp f 3 and the two recombinant Candida proteins was further demonstrated by IgE-immunoblot analysis. IgE binding to rAsp f 3 could be inhibited in the ELISA by adding either of the recombinant Candida peroxisomal proteins to sera containing IgE directed against Asp f 3. Taken together, these observations prove that the Asperigillus allergen and the two Candida proteins share IgE-binding epitopes.  相似文献   

15.
Canis familiaris allergen 1 (Can f 1) and Canis familiaris allergen 2 (Can f 2) are the two major allergens present in dog dander extracts. We now report the isolation of cDNAs encoding both proteins and present their nucleotide and deduced amino acid sequences. Can f 1, produced by tongue epithelial tissue, has homology with the von Ebner's gland (VEG) protein, a salivary protein not previously thought to have allergenic properties. Can f 2, produced by tongue and parotid gland, has homology with mouse urinary protein (MUP), a known allergen. Both VEG protein and MUP are members of the lipocalin family of small ligand-binding proteins. Recombinant forms of Can f 1 and Can f 2 were produced and tested for immunoglobulin E (IgE) reactivity. Among dog-allergic subjects, 45% had IgE directed exclusively to rCan f 1, and 25% had IgE to both rCan f 1 and rCan f 2. In addition, both recombinant proteins were able to cross-link IgE and elicit histamine release from peripheral blood leucocytes in vitro. These findings confirm that Can f 1 and Can f 2 are major and minor dog allergens, respectively, and demonstrate that recombinant forms of dog allergens retain at least some IgE-binding epitopes.  相似文献   

16.
There is growing evidence that the amino-terminal globular domain of apolipoprotein B (apoB) is essential for lipoprotein particle formation in the hepatic endoplasmic reticulum. To identify the structural requirements for its function in lipoprotein assembly, cysteine (Cys) pairs required to form the seven disulfide bonds within the amino-terminal 21% of apoB were replaced in groups or individually by serine. Substitution of Cys pairs required for formation of disulfide bonds 1-3 or 4-7 (numbered from amino to carboxyl terminus) completely blocked the secretion of apoB28 in transfected HepG2 cells. To identify the specific disulfide bonds required for secretion, Cys pairs were mutated individually. Substitution of Cys pairs required for disulfide bonds 1, 3, 5, 6, or 7 had little or no impact on apoB28 secretion or buoyant density. In contrast, individual substitution of Cys pair 2 (amino acid residues 51 and 70) or 4 (218 and 234) severely inhibited apoB28 secretion and its capacity to undergo intracellular assembly with lipid. The same assembly and secretion defects were observed when these mutations were expressed as part of apoB50. These studies provide direct evidence that the ability of the internal lipophilic regions of apoB to engage in the recruitment and sequestration of lipid during translation is critically dependent upon a structural configuration contained within or affected by the amino-terminal 5% of the protein.  相似文献   

17.
Mass spectrometry of fragments produced by limited proteolytic digestion of pro-enkephalin was used to locate the disulfide bridges in synenkephalin (pro-enkephalin 1-73), a domain which contains sorting information for targeting the pro-neuropeptide to the granules of the regulated secretory pathway in neuroendocrine cells. Mass spectrometric analysis was optimized by using chemicals that gave low interference with the ionization and desorption processes, and computer software which simplified the identification of all possible disulfide-linked peptide fragments. Three disulfide bridges between Cys2-Cys24, Cys6-Cys28, and Cys9-Cys41 were identified. Protein conformational prediction of synenkephalin1-42 shows beta-turns which facilitate the formation of these disulfide bonds.  相似文献   

18.
The complete amino acid sequence and location of the disulfide bonds of two-chain botrocetin, which promotes platelet agglutination in the presence of von Willebrand factor, from venom of the snake Bothrops jararaca are presented. Sequences of the alpha and beta subunits were determined by analysis of peptides generated by digestion of the S-pyridylethylated protein with Achromobacter protease I or alpha-chymotrypsin and by chemical cleavage with cyanogen bromide or 2-(2'-nitrophenylsulfenyl)-3-methyl-3-bromoindolenine. Two-chain botrocetin is a heterodimer composed of the alpha subunit (consisting of 133 amino acid residues) and the beta subunit (consisting of 125 amino acid residues) held together by a disulfide bond. Seven disulfide bonds link half-cystine residues 2 to 13, 30 to 128, and 103 to 120 of the alpha subunit; 2 to 13, 30 to 121, and 98 to 113 of the beta subunit; and 80 of the alpha subunit to 75 of the beta subunit. In terms of amino acid sequence and disulfide bond location, two-chain botrocetin is homologous to echinoidin (a sea urchin lectin) and other C-type (Ca(2+)-dependent) lectins.  相似文献   

19.
Apolipoprotein E (apoE), a 299 amino acid protein, is a ligand for the low density lipoprotein receptor (LDLr). It has been established that basic amino acids situated between apoE residues 136 and 150 participate in the interaction of apoE with the LDLr. Evidence suggests that apoE is heterogeneous on lipoproteins in its conformation and in its ability to react with cell surface receptors. Our goal was to produce mAbs that could serve as conformational probes of the LDLr binding site of apoE. We used a series of apoE variants that have amino acid substitutions at residues 136, 140, 143, 144, 145, 150, 152, and 158 to identify the epitopes of two anti-human apoE monoclonal antibodies (mAbs), 1D7 and 2E8, that inhibit apoE-mediated binding to the LDLr. We show that most of the variants that have reduced reactivity with the LDL receptor also have reduced reactivity with the mAbs. The epitopes for both mAbs appear to include residues 143 through 150 and thus coincide with the LDLr-binding site of apoE. It is notable that mAb 2E8, but not 1D7, resembles the LDLr in showing a reduced reactivity with apoE (Arg158 --> Cys). While most of the receptor-defective variants involve replacement of apoE residues directly implicated in binding, substitution of Arg158 by Cys is thought to indirectly affect binding of apoE to the LDLr by altering the conformation of the receptor-binding site. To determine whether the similarity in specificities of the mAbs and the LDLr reflect structural similarities, we cloned and characterized the cDNAs encoding the light and heavy chains of both mAbs. Primary sequence analysis revealed that, although these two antibodies react with overlapping epitopes, their respective complementarity determining regions (CDRs) share little homology, especially those of their heavy chains. The two mAbs, therefore, likely recognize different epitopes or topologies within a limited surface of the apoE molecule. Four negatively charged amino acids were present in the second CDR of the 2E8 heavy chain that could be approximately aligned with acidic amino acids within the consensus sequence of the LDLr ligand-binding domain. This could indicate that mAb 2E8 and the LDLr use a common mode of interaction with apoE.  相似文献   

20.
The catalytic properties of cysteine residues Cys46 and Cys165, which form intersubunit disulfide bonds in the peroxidatic AhpC protein of the alkyl hydroperoxide reductase (AhpR) system from Salmonella typhimurium, have been investigated. The AhpR system, composed of AhpC and a flavoprotein reductase, AhpF, catalyzes the pyridine nucleotide-dependent reduction of organic hydroperoxides and hydrogen peroxide. Amino acid sequence analysis of the disulfide-containing tryptic peptide demonstrated the presence of two identical disulfide bonds per dimer of oxidized AhpC located between Cys46 on one subunit and Cys165 on the other. Mutant AhpC proteins containing only one (C46S and C165S) or no (C46,165S) cysteine residues were purified and shown by circular dichroism studies to exhibit no major disruptions in secondary structure. In NADH-dependent peroxidase assays in the presence of AhpF, the C165S mutant was fully active in comparison with wild-type AhpC, while C46S and C46,165S displayed no peroxidatic activity. In addition, only C165S was oxidized by 1 equiv of hydrogen peroxide, giving a species that was stoichiometrically reducible by NADH in the presence of a catalytic amount of AhpF. Oxidized C165S also reacted rapidly with a stoichiometric amount of the thiol-containing reagent 2-nitro-5-thiobenzoic acid to generate a mixed disulfide, and was susceptible to inactivation by hydrogen peroxide, strongly supporting its identification as a cysteine sulfenic acid (Cys46-SOH). The lack of reactivity of the C46S mutant toward peroxides was not a result of inaccessibility of the remaining thiol as demonstrated by its modification with 5, 5'-dithiobis(2-nitrobenzoic acid), but could be due to the lack of a proximal active-site base which would support catalysis through proton donation to the poor RO- leaving group. Our results clearly identify Cys46 as the peroxidatic center of AhpC and Cys165 as an important residue for preserving the activity of wild-type AhpC by reacting with the nascent sulfenic acid of the oxidized protein (Cys46-SOH) to generate a stable disulfide bond, thus preventing further oxidation of Cys46-SOH by substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号