首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A comparative study of infrared absorption due to H2O and D2O impurities in a fluorozirconate glass (53ZrF4·20BaF2·4LaF3·3AlF3·20NaF) was carried out. The H2O and D2O were introduced into the glass by reaction of the surface at 260°C with H2O and D2O vapor entrained in a stream of N2. Reaction with H2O produced IR absorption bands at 2.9 μm (O–H stretch) and 6.1 μm (H2O bend). Reaction with D2O produced bands at 3.9 μm (O–D stretch) and 8.3 μm (D2O bend). The ratios of the corresponding D2O/H2O peak frequencies are 0.74 for both the stretching and bending vibrations, in good agreement with the value of 0.727 predicted from the difference in the OH and OD reduced masses.  相似文献   

2.
Isothermal oxidation of dense TiC ceramics, fabricated by hot-isostatic pressing at 1630°C and 195 MPa, was performed in Ar/O2 (dry oxidation), Ar/O2/H2O (wet oxidation), and Ar/H2O (H2O oxidation) at 900°–1200°C. The weight change measurements of the TiC specimen showed that the dry, wet, and H2O oxidation at 850°–1000°C is represented by a one-dimensional parabolic rate equation, while the oxidation in the three atmospheres at 1100° and 1200°C proceeds linearly. Cross-sectional observation showed that the dry oxidation produces a lamellar TiO2 scale consisting of many thin layers, about 5 μm thick, containing many pores and large cracks, while H2O-containing oxidation decreases pores in number and diminishes cracks in scales. Gas evolution of CO2 and H2 with weight change measurement was simultaneously followed by heating the TiC to 1400°C in the three atmospheres. Cracking in the TiO2 scale accompanied CO2 evolution, and the H2O-containing oxidation produced a small amount of H2. A piece of single crystal TiC was oxidized in 16O2/H218O to reveal the contribution of O from H2O to the oxidation of TiC by secondary ion mass spectrometry.  相似文献   

3.
It is reported that, on mechanochemical treatment, weinschenkite-type RPO4·2H2O (R = Dy, Y, or Er) gradually transforms into rhabdophane-type RPO4· nH2O (n = 0.5 to 1) and weinschenkite-type YbPO4·2H2O into xenotime-type YbPO4, at room temperature in air. Rhabdophane-type YPO4·0.8H2O and ErPO4·0.9H2O obtained by grinding weinschenkite-type RPO4·2H2O (R=Y or Er) are new. The new rhabdophane-type YPO4·0.8H2O and ErPO4·0.9H2O gradually transform to xenotime-type YPO4 and ErPO4 when heated above 900°C (R = Y) and 700°C (R = Er) in air.  相似文献   

4.
Amorphous WO3 or WO3 or H2O is formed by hydrolysis of tungsten ethoxide. The temperature of hydrolysis influences the crystallization of WO3·H2O. Tungsten hydrate (WO3·H2O) has an orthorhombic unit cell with a=0.5235 nm, b = 1.0688 nm, and c=0.5123 nm. Orthorhombic WO3 crystallizes at 350° to 500°Cfrom amorphous WO3. Cubic WO3 is formed at 200° to 310°C with dehydration of WO3·H2O. WO3 transformations are examined by high-temperature X-ray diffraction. The kinetics of formation of the cubic modification have been studied by measuring the weight decrease with a thermobalcnce. Formation isotherms can be interpreted in terms of the first-order equation –In (1–f)=kt; activation energies are 110 and 80 kJ mol−1 for initial and final stages, respectively.  相似文献   

5.
Single-crystal X-ray and electron-diffraction studies show the existence in one polymorph of 4CaO.Al2O3. 13H2O of a hexagonal structural element with α= 5.74 a.u., c = 7.92 a. u. and atomic contents Ca2(OH)7- 3H2O. These structural elements are stacked in a complex way and there are probably two or more poly-types as in SiC or ZnS. Hydrocalumite is closely related to 4CaO.A12O3.13H2O, from which it is derived by substitution of CO32-for 20H-+ 3H2O once in every eight structural elements; similar substitutions explain the existence of compounds of the types 3CaO Al2O3.Ca Y 2- xH2O and 3CaO Al2O3 Ca Y xH2O. On dehydration, 4CaO.Al2O3.13H2O first loses molecular water and undergoes stacking changes and shrinkage along c. At 150° to 250°C., Ca(OH)2 and 4CaO.3Al2O3.3H2O are formed and, by 1000°C., CaO and 12CaO.7Al2O8. The dehydration of hydrocalumite follows a similar course, but no 4CaO.3Al2O3.3H2O is formed.  相似文献   

6.
The phase diagram for the ternary system MgO─P2O5─H2O at 25°C has been constructed. The magnesium phosphates represented are Mg(H2PO4)2· n H2O ( n = 4, 2, 0), MgHPO4·3H2O, and Mg3(PO4)2· m H2O ( m = 8, 22). Because of the large differences in the solubilities of these compounds, the technique which involves plotting the mole fractions of MgO and P2O5 as their 10th roots has been employed. With the exception of MgHPO4·3H2O, the magnesium phosphates are incongruently soluble. Because incongruency is associated with a peritectic-like reaction, the phase Mg2(PO4)3· 8H2O persists metastably for an extended period.  相似文献   

7.
The high-temperature stability of alumina (Al2O3) in argon and argon/water-vapor (Ar/H2O) environments has been investigated. Samples were exposed at temperatures of 1300°C–1700°C for 10 h. The microstructure, flexural strength, and volume all showed significant changes in the Ar/H2O environment at 1700°C. Samples also became whiter, because of the oxidation of graphite impurities that had diffused from the hot-processing dies. In the Ar/H2O environment at 1700°C, grain-boundary etching occurred and was much more severe than in the pure-argon environment, which was very likely caused by the enhanced formation of gaseous Al(OH)3 and Al(OH)2 along grain boundaries. In addition, in the Ar/H2O environment, substantial grain growth occurred in the surface vicinity. This grain growth, together with grain-boundary etching, led to a decrease in flexural strength.  相似文献   

8.
Na23SiO2 glasses of high water content were prepared under high-pressure, hydrothermal conditions. The sodium diffusion coefficient, DNa , in these glasses measured at 100°C depended strongly on H2O content. With increasing H2O content, DNa . at 100°C decreased initially to a minimum at 3∼4 wt% H,O and then increased. This behavior of DNa . Was similar to that of dc conductivity.  相似文献   

9.
The nature of the low-temperature inversions γ-α' and α'-β was investigated by various techniques: hydrothermal and "dry" quenching runs, differential thermal analysis at atmospheric and elevated nitrogen pressures, X-ray diffractometer patterns obtained at elevated temperatures, "static" pressure techniques, and infrared absorption spectrometry. A revised energy-temperature diagram is presented for Ca2SiO4, with the transition γ' to α' taking place at about 725°C. and the α'-β transition, although not reversible at an exact temperature, taking place at about 670° C. At low water pressures (2000 lb. per sq. in.) the inversion γ-α' was placed at 675°C. Attempts to extrapolate the value obtained at 2000 lb. per sq. in. to obtain a more accurate reversible inversion temperature at atmospheric pressure, although limited in accuracy by the reliability of heat-of-transition data, would indicate a temperature of about 725° C. at atmospheric pressure. Three new compounds, 8CaO.3SiO2 -3H2O (X), 6CaO 3SiO2.H2O (Y), and 9CaO-6SiO2 H2O (Z), were found to be stable above 700°C. at H2O pressures greater than 7500 lb. per sq. in.  相似文献   

10.
Crystallization rates were measured in vacuum, dry nitrogen, and water-saturated nitrogen atmospheres from 1300° to 1540°C. In all cases the observed rates were linear. Three reactions appeared to contribute to crystallization: the intrinsic crystallization, the impurity effect of H2O vapor, and furnace contamination. Enhancement of crystallization by both water vapor and furnace contamination is attributed to the breaking of silicon—oxygen bonds of the glass structure. Competitive adsorption mechanisms were proposed to characterize the adsorption of water and impurity species. The activation energy for apparent intrinsic crystallization was 134 kcal/mole; the activation energy for crystallization in H2O vapor was 77 kcal/mole.  相似文献   

11.
The reaction of rare-earth (RE; Y, Er, and Yb) chloride hydrates in 1,4-butanediol at 300°C for 2 h gave mixtures of RE(OH)2Cl and RE2O3· x H2O, and the products were composed of irregularly shaped particles. A prolonged reaction (10 h) yielded a mixture of RE(OH)2Cl and RE2O3· x H2O for Er or Y, but phase-pure RE2O3· x H2O was obtained for Yb. The product for Yb comprised needle-shaped single crystals of Yb2O3· x H2O with a width of 0.2–0.6 μm and a length of 5–15 μm. The Yb2O3· x H2O phase decomposed to Yb2O3 at 350°–500°C, preserving the needle-shaped morphology; this was maintained even after calcination at 1100°C. Single crystals of Yb2O3 obtained by the calcination of Yb2O3· x H2O at 500°C had very small voids and the voids were enlarged to 35 Å in diameter by calcination at 800°C.  相似文献   

12.
Synthesis of Titanate Derivatives Using Ion-Exchange Reaction   总被引:3,自引:0,他引:3  
Two types of titanate derivatives, layered hydrous titanium dioxide (H2Ti4O9· n H2O) and potassium octatitanate (K2Ti8O17) with a tunnellike structure, were synthesized using an ion-exchange reaction. Fibrous potassium tetratitanate (K2Ti4O9· n H2O) was prepared by calcination of a mixture of K2CO3 and TiO2 with a molar ratio of 2.8 at 1050°C for 3 h, followed by boiling-water treatment of the calcined products for 10 h. The material then was transformed to layered H2Ti4O9· n H2O through an exchange of K+ ions with H+ ions using HCl. K2Ti8O17 was formed by a thermal treatment of KHTi4O9· n H2O. Pure KHTi4O9· n H2O phase was effectively produced by a treatment of K2Ti4O9 with 0.005 M HCl solution for 30 min. Thermal treatment at 250°–500°C for 3 h resulted in formation of only K2Ti8O17.  相似文献   

13.
Undoped or Y2O3-doped ZrO2 thin films were deposited on self-assembled monolayers (SAMs) with either sulfonate or methyl terminal functionalities on single-crystal silicon substrates. The undoped films were formed by enhanced hydrolysis of zirconium sulfate (Zr(SO4)·4H4O) solutions in the presence of HCl at 70°C. Typically, these films were a mixture of two phases: nanocrystalline tetragonal- ( t -) ZrO2 and an amorphous basic zirconium sulfate. However, films with little or no amorphous material could be produced. The mechanism of film formation and the growth kinetics have been explained through a coagulation model involving homogeneous nucleation, particle adhesion, and aggregation onto the substrate. Annealing of these films at 500°C led to complete crystallization to t -ZrO2. Amorphous Y2O3-containing ZrO2 films were prepared from a precursor solution containing zirconium sulfate, yttrium sulfate (Y2(SO4)38·H2O), and urea (NH2CONH2) at pH 2.2–3.0 at 80°C. These films also were fully crystalline after annealing at 500°C.  相似文献   

14.
Phase equilibria have been determined in the system CaO-Al2O3-H2O in the temperature range 100° to 1000°C. under water pressures of up to 3000 atmospheres. Only three hydrated phases are formed stably in the system: Ca(OH)2, 3CaO·Al2O3·6H2O, and 4CaO·3Al2O3-3H2O. Pressure-temperature curves delineating the equilibrium decomposition of each of these phases have been determined, and some ther-mochemical data have been deduced therefrom. It has been established that both the compounds CaO·Al2O3 and 3CaO·Al2O3 have a minimum temperature of stability which is above 1000°C. The relevance of the new data to some aspects of cement chemistry is discussed.  相似文献   

15.
A barium titanate precursor with a barium:titanium ratio of 1:4 was prepared by controlled coprecipitation of mixed barium and titanium species with an ammonium oxalate aqueous solution at pH 7. The results of thermal analysis and IR measurement show that the obtained precursor is a mixture of BaC2O4·0.5H2O and TiO(OH)2·1.5H2O in a molar ratio of 1:4. Crystallized BaTi4O9 was obtained by the thermal decomposition of a precipitate precursor at 1300°C for 2 h in air. The dimensions of the powder calcined at 1000°C are between 100 and 300 nm. The grain dimensions of the sintered sample for 2 h at 1300°C are of the order of 10 to 30 μm. Dielectric properties of disk-shaped sintered specimens in the microwave frequency region were measured using the TE011 mode. Excellent microwave characteristics for BaTi4O9—ɛ= 38 ± 0.5, Q = 3800–4000 at 6–7 GHz and τ f = 11 ± 0.7 ppm/°C—were found.  相似文献   

16.
The solubility of water vapor at 750° to 1050°C was determined for alkali borate melts containing 0 to 40 mole % Li2O, Na2O, or K2O. In all cases the solubility in these melts is linearly proportional to the square root of the H2O partial pressure. At p H2O = 1 atm and T = 900°C, o.5 to 2.2 mole % H2O are dissolved in the melts in equilibrium. In the potassium borate melts a minimum of solubility was observed at about 25 mole % K2O; in the sodium borate melts the minimum was at 35 to 40 mole % Na2O. In the lithium borate melts a minimum of solubility was not reached in the range of compositions investigated. These results are discussed in terms of a concept for the acid-base properties of melts and glasses in which the position of the solubility minimum corresponds to the "neutral point" of an acidity-basicity scale. Some corroborating qualitative observations concerning the evaporation of components from the glass melts and the chemical resistivity of the corresponding solid glasses are discussed.  相似文献   

17.
The oxidation of BN composite interphases was examined with a series of model materials. Oxidation was examined in both low-water-vapor (∼20 ppm H2O/O2) environments at 900°C and high-water-vapor (1% and 10% H2O/O2) environments at 700° and 800°C. The low-water-vapor case was explored with layered BN/SiC materials. This case was dominated by borosilicate glass formation, and the 20 ppm water vapor gradually removed the boron from the glass, leaving a larger amount of SiO2 than would be expected from simple SiC oxidation. Layered SiC/BN/SiC materials were also used to study low-water-vapor oxidation effects within the composite. The high-water-vapor case was explored with SiC/BN/SiC minicomposites, and it was dominated by volatilization of BN as HBO2( g ), H3BO3( g ), and H3B3O6( g ). A model for recession of the BN fiber coating was developed based on the gas-phase diffusion of these species out of the annular region around the SiC fiber and concurrent sealing of this annular region by oxidation.  相似文献   

18.
The wetting of polycrystalline alumina by a colored, calciamagnesia aluminosilicae glass was found to be dependent on temperatutre between 1300° and 1500°C, but independent of gas atmosphere effects. Neither the oxygen partial pressure, oveer the range of 10-6 to 10-10 Pa, the gas buffer system (Co/CO2 or H2/H2O), nor pre-equilibration of the substrate surface with the atmosphere at tge exoperimental temperature before solid-liuid interface formation affected the stable contact angle. An initial drop in contact angle the stable contact angle. An initial drop in contact angle occurring within the first hour is attributed to repaid dissolution of alumina and the formation of a stable glass/alumina interface. The contact angle after an 8-h isothermal hold decreased from 1300° to 1500°C. The solid-liquid interfacial energy, μMS1, controls the wetting behavior. Changes in μMs1 are attributed to he breakup of the silica network as temperature increases.  相似文献   

19.
Glasses containing up to several percent of Ar, N2, and CO2 were prepared at 2000 to 150,000 psi and up to 950°C and retained under ambient conditions. The solubilities are presented as a function of pressure, temperature, and composition of glass. Solubilities of O, He, and H2O were also investigated in various glass compositions, especially K2O–4SiO2 and B2O3. The evolution of the gases at atmospheric pressure was followed by electron microscopy and density measurements.  相似文献   

20.
Iron oxide polymers intercalated and/or loaded within täniolite have been studied as a CO2 decomposition medium. Fe2+ was exchanged for Li+ in täniolite, oxidized by air-bubbling at 60°–70°C. The basic d -spacing (13.75 Å in the Li+ form) was expanded to give 14.86 Å in the Fe2+ form. Oxidation by air in the form of suspension gave a 15.3-Å phase, which was ascribed to formation of magnetite within the interlayer. The interlayer distance of the intercalated phase remained the same upon heating at 300°C. The magnetite–intercalated täniolite was heated to activate in a H2 and/or H2O steam. CO2 decomposition reactivity at 300°C has been evidenced by evolution of CO gas. The high reactivity for CO2 decomposition is ascribed to the highly dispersed iron oxide ceramics within the interlayer of täniolite Li[(Mg2Li)(Si4O10)]F2 n H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号