首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
纵向涡强化竖直平板自然对流换热的实验研究   总被引:3,自引:1,他引:3  
对纵向涡强化竖直平板自然对流换热进行了实验研究。结果表明,在一定的Rayleigh数范围内,直角三角翼纵向涡发生器的攻角、翼高、翼宽等几何参数是影响强化换热的主要因素。存在最佳攻角;宽高比一定时,翼高和翼宽的变化会影响换热的效果。发现在直角三角翼阵列中前排直角三角翼产生的纵向涡可以强化后排直角三角翼纵向涡的换热。将直角三角翼与矩形低肋换热表面的性能作了对比性实验,在其他条件相同的情况下,直角三角翼强化换热的效果优于矩形低肋。  相似文献   

2.
新型矩形翼纵向涡发生器流动与换热实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在矩形翼的侧面粘贴一个小矩形辅翼,构成一种新型矩形翼纵向涡发生器,称为组合翼。在压力损失相等的条件下,通过实验比较了矩形通道内组合翼与原始矩形翼纵向涡发生器的流动与换热特性。结果表明:对于原始矩形翼,其最佳攻角为45°;与矩形翼相比,组合翼的换热明显增强,且阻力系数减小,尤其当辅翼布置在矩形翼的上游时换热增强与阻力系数减小效果更加明显;研究范围内,辅翼攻角为30°时的流动与传热综合效果最佳。  相似文献   

3.
多排纵向涡发生器强化竖直平板自然对流换热的实验研究   总被引:1,自引:0,他引:1  
对多排纵向涡发生器对竖直平板自然对流的强化效果进行了研究。结果表明,在一定Rayleigh数范围内,直角三角翼纵向涡发生器的翼高、翼宽以及多排布置的阵列方式是影响强化换热的主要因素。在高宽比一定的情况下,存在最佳翼高。发现多排布置时LVG阵列方式的不同会影响换热效果;且要使得整个板的强化换热效果达到最佳,应选择沿竖直发热板长度方向间隔的布置多排LVG,并适当拉大间隔距离。  相似文献   

4.
在矩形翼的基础上,提出一种新型的八边形翼纵向涡发生器.在矩形通道内,通过试验比较了矩形翼和八边形翼纵向涡发生器的流动与传热特性.分别在Re相同和阻力损失相同的条件下,分析了不同纵向涡发生器的强化传热效果.结果表明:与矩形翼相比,八边形翼纵向涡发生器的强化传热效果更好,而阻力系数没有明显增加;在阻力损失相同的条件下,矩形翼和八边形翼纵向涡发生器的传热增强率小于在Re相同时的传热增强率.  相似文献   

5.
纵向涡强化换热的优化设计及机理分析   总被引:1,自引:0,他引:1  
对带纵向涡发生器的椭圆管翅片换热器空气侧表面的换热和流动特性进行了三维数值模拟.深入分析了纵向涡对流场和温度场的影响,并通过场协同原理揭示了纵向涡强化换热的根本机理,即减小了速度和温度梯度之间的夹角,改善了速度场和温度场的协同性.在此基础上,对纵向涡发生器的布置位置(上游布置和下游布置)和纵向涡发生器的攻角α(15°,30°,45°,60°)进行了优化设计.结果表明:当纵向涡发生器布置于换热管下游时,具有更好的强化换热能力;在纵向涡发生器采用下游布置的前提下,当纵向涡发生器的攻角α=30°时,具有最佳的强化换热能力.  相似文献   

6.
为增强微通道的流动和换热特性,对微通道结合纵向涡发生器进行了数值模拟,分析不同雷诺数下纵向涡发生器的长度、横向间隙对微通道流动与换热性能指标的影响。结果表明:在进口速度为0.5~2 m/s时,雷诺数的增加会引起微通道内的换热性能增强,摩擦因子减小及综合传热性减小;涡发生器长度对换热影响较小,但增加涡发生器长度会引起阻力增加,横向间距对阻力影响较小,但增加横向间距会引起换热性能提高;涡发生器长度为0.30~0.40 mm时综合因子为0.94~1.21,横向间隙为0.1~0.5 mm时综合因子为0.88~1.17;纵向涡发生器长度为0.3 mm和横向间隙为0.5 mm时,有利于综合传热性能的提高。在低雷诺数时微通道结合纵向涡发生器的强化传热和综合传热因子要比高雷诺数时好。  相似文献   

7.
采用三维数值方法对涡轮叶片前缘射流腔内的流动和换热特性进行了研究。在射流腔内安置一对三角形纵向涡发生器,研究了纵向涡发生器的安置角度、两纵向涡发生器间的距离以及纵向涡发生器距射流孔中心的距离对流动和换热的影响,分析了纵向涡发生器强化冲击换热的机理。结果表明:当在射流孔前的上壁面上增加一对纵向涡发生器后,射流孔前的横流流速减小,射流穿透力增大,射流腔内湍动能增大,从而造成靶面换热极值及高换热区域显著增大;在研究的纵向涡发生器各位置参数范围内,当横流雷诺数较低时,各参数对靶面换热的影响不大。  相似文献   

8.
提出一种强化太阳能热风干燥器和集热器气侧换热的新型涡流发生器—斜截半椭圆柱体,并对其进行了实验研究及机理分析。在雷诺数为4000~38000的紊流范围内对矩形风道内分别布置单排一对直角三角翼、矩形翼、梯形翼、斜截半圆柱体、斜截半椭圆柱体等涡流发生器的强化传热效果和压降特性进行了对比实验。实验在稳态的气水逆流换热方式下进行,并固定各涡流发生器的高宽比为1/2,该迎流攻角为60°。结果表明,斜截半椭圆柱体是具有优越的强化气侧换热效果和低压降特性的新型涡流发生器。该对这种新型涡流发生器强化换热的机理作了初步分析。  相似文献   

9.
不同排列方式下三角翼波纹翅片管换热器的换热性能比较   总被引:2,自引:0,他引:2  
应用三维数值模拟的方法对加装三角翼涡发生器的波纹翅片管换热器的流动换热特性进行了研究.3排换热圆管按顺排和叉排2种方式排列.结果表明:三角翼产生的纵向涡包括1个主涡和1个角涡.顺排布置时,纵向涡不但改善了尾迹区的换热,同时还大大强化了三角翼下游管排壁面的换热;叉排布置时,纵向涡在遇到后一个波谷时很快被抑制,换热的强化主要作用于尾迹区.ReD=3000时,与无三角翼的波纹翅片相比,三角翼波纹翅片的j、f,因子在顺排和叉排布置中分别增加了15.4%、10.5%和13.1%、7.0%.在不同排列方式下,三角翼产生的纵向涡均提高了波纹翅片管换热器的换热性能.  相似文献   

10.
利用SIMPLE算法及k-ε湍流模型对加装矩形小翼和三角型小翼(攻角为45°、60°)的单H形翅片的换热性能进行数值模拟。研究表明:雷诺数相同时,随着攻角的增大,加装矩形小翼的单H形翅片的进出口温差、压力损失、努赛尔数、欧拉数、换热因子和综合性能评价标准JF的值都比加装三角形小翼要大。由于纵向涡发生器的存在,使得管后回流区和纵向涡发生器附近的湍动能增大,从而导致这些区域内的温度升高,沿着径向方向,湍动能大致呈"M"形分布,温度大致呈"W"形分布。  相似文献   

11.
This paper presents the influences of main parameters of longitudinal vortex generator (LVG) on the heat transfer enhancement and flow resistance in a rectangular channel. The parameters include the location of LVG in the channel, geometric sizes and shape of LVG. Numerical results show that the overall Nusselt number of channel will decrease with the LVGs’ location away from the inlet of the channel, and decrease too with the space between the LVG pair decreased. The location of LVG has no significant influence on the total pressure drop of channel. With the area of LVG increased, the average Nusselt number and the flow loss penalty of channel, especially when β = 45° will increase. With the area of LVG fixed, increasing the length of rectangular winglet pair vortex generator will bring about more heat transfer enhancement and less flow loss increase than that increasing the height of rectangular winglet pair vortex generator. With the same area of LVG, delta winglet pair is more effective than rectangular winglet pair on heat transfer enhancement of channel, and delta winglet pair-b is more effective than delta winglet pair-a. Delta winglet pair-a results in a higher pressure drop, the next is rectangular winglet pair and the last is delta winglet-b. The increase of heat transfer enhancement is always accompanied with the decrease of field synergy angle between the velocity and temperature gradient when the parameters of LVG are changed. This confirms again that the field synergy is the fundamental mechanism of heat transfer by longitudinal vortex. The laminar heat transfer of the channel with punched delta winglet pair is experimentally and numerically studied in the present paper. The numerical result for the average heat transfer coefficient of the channel agrees well with the experimental result, indicating the reliability of the present numerical predictions.  相似文献   

12.
This paper summarizes the current state of the art related to improvement of the heat exchanger surfaces using streamwise longitudinal vortices. Primarily, the improvements related to fin-tube cross-flow heat exchangers and the plate-fin heat exchangers have been addressed. Protrusions in certain forms, such as delta wings or winglet pairs, act as vortex generators, which can enhance the rate of heat transfer from the heat-exchanger surfaces that may be flat or louvered. The strategically placed vortex generators create longitudinal vortices, which disrupt the growth of the thermal boundary layer, promote mixing between fluid layers, and hence lead to augmentation in heat transfer. The flow fields are dominated by swirling motion associated with modest pressure penalty. Heat transfer is augmented substantially for all the proposed configurations of the longitudinal vortex generators, such as delta wings, rectangular winglet pairs, and delta winglet pairs, with varying degree of pressure penalty. Both computational and experimental investigations on flow and heat transfer in the heat exchanger passages with built-in vortex generators are revisited and summarized.  相似文献   

13.
《Applied Thermal Engineering》2007,27(14-15):2609-2617
3-D numerical simulation results are presented for laminar flow heat transfer of the fin-and-tube surface with vortex generators. The effects of Reynolds number (from 800 to 2000), the attack angle (30° and 45°) of delta winglet vortex generator are examined. The numerical results are analyzed from the viewpoint of field synergy principle. It is found that the inherent mechanism of heat transfer enhancement by longitudinal vortex can be explained by the field synergy principle, the second flow generated by the vortex generators results in the reduction of the intersection angle between the velocity and fluid temperature gradient. In addition, the heat transfer enhancement of delta winglet with the attack angle of 45° is larger than that of 30°, while the delta winglet with the attack angle of 45° results in an increase of the pressure drop, however, the delta winglet with the attack angle of 30° results in a slight decrease.  相似文献   

14.
This paper focuses on the study of heat transfer enhancement in natural vertical convection by using delta‐winglet longitudinal vortex generators. In the experimental range of Rayleigh numbers, the effect of attack angle, height, and width of the winglet of longitudinal vortex generator (LVG) on heat transfer performance was experimentally investigated. The results showed that there was an optimal attack angle and that the height and width can affect the heat transfer. In terms of array performance, it was shown that initial arrays could enhance the performance of later arrays. Moreover, the effects of LVG and low rectangular fins were compared. The results showed that the effect of LVGs was greater than that of low rectangular fins. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(6): 402–409, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20126  相似文献   

15.
Longitudinal vortices are capable of producing beneficial effects in heat transfer enhancement. Experiments in natural convection heat transfer enhancement were done on a vertical flat heating plate using delta‐winglet longitudinal vortex generators (LVGs) arranged in rows. In an experimental range of Rayleigh number, the height and width of the winglet of the longitudinal vortex generator (LVG), the array form of the longitudinal vortex generators on the heat transfer performance were experimentally investigated, and the best height of the winglet of the longitudinal vortex generator was obtained. The results showed the change of the array form of the longitudinal vortex generators could affect the heat transfer effect. Finally by arranging some longitudinal vortex generator arrays with the appropriate interval, the whole heat transfer effect of the interval could reach a prime value. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(5): 351–358, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20119  相似文献   

16.
雷诺数Re=214~10 703时,通过数值模拟方法对布置有冲孔和无孔的两种矩形小翼涡流发生器的矩形通道进行了传热和流阻特性的研究。计算结果表明:在低雷诺数下,冲孔矩形小翼涡流发生器的传热因子j值与无孔矩形小翼涡流发生器相差不大,而在高雷诺数下,冲孔涡流发生器的传热因子j值略低于无孔涡流发生器,大约低1.03%~3.05%。在相同的雷诺数下,无孔矩形小翼涡流发生器的阻力因子f大于冲孔涡流发生器,而且随着雷诺数的增大二者的差距也越来越大。通过对比综合性能指标可知,两种通道的综合性能指标均随着雷诺数的增加而减小,而且冲孔矩形小翼涡流发生器的综合性能要优于无孔矩形小翼涡流发生器。  相似文献   

17.
Three-dimensional numerical simulation results are presented for a fin-and-tube heat transfer surface with vortex generators. The effects of the Reynolds number (from 800 to 2 000) and the attack angle (30° and 45°) of a delta winglet vortex generator are examined. The numerical results are analyzed on the basis of the field synergy principle to explain the inherent mechanism of heat transfer enhancement by longitudinal vortex. The secondary flow generated by the vortex generators causes the reduction of the intersection angle between the velocity and fluid temperature gradients. In addition, the computational evaluations indicate that the heat transfer enhancement of delta winglet pairs for an aligned tube bank fin-and-tube surface is more significant than that for a staggered tube bank fin-and-tube surface. The heat transfer enhancement of the delta winglet pairs with an attack angle of 45° is larger than that with an angle of 30°. The delta winglet pair with an attack angle of 45° leads to an increase in pressure drop, while the delta winglet pair with the 30° angle results in a slight decrease. The heat transfer enhancement under identical pumping power condition for the attack angle of 30° is larger than that for the attack angle of 45° either for staggered or for aligned tube bank arrangement. Translated from Journal of Xi’an Jiao Tong University, 2006, 40(7): 757–761 [译自: 西安交通大学学报]  相似文献   

18.
3-D numerical simulations were presented for laminar flow and heat transfer characteristics in a rectangular channel with vortex generators. The effects of Reynolds number (from 800 to 3 000), the attack angle of vortex generator (from 15° to 90°) and the shape of vortex generator were examined. The numerical results were analyzed based on the field synergy principle. It is found that the inherent mechanism of the heat transfer enhancement by longitudinal vortex can be explained by the field synergy principle, that is, the second flow generated by vortex generators results in the reduction of the intersection angle between the velocity and fluid temperature gradient. The longitudinal vortex improves the field synergy of the large downstream region of longitudinal vortex generator (LVG) and the region near (LVG); however, transverse vortex only improves the synergy of the region near vortex generator. Thus, longitudinal vortex can enhance the integral heat transfer of the flow field, while transverse vortex can only enhance the local heat transfer. The synergy angle decreases with the increase of Reynolds number for the channel with LVG to differ from the result obtained from the plain channel, and the triangle winglet performs better than the rectanglar one under the same surface area condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号