首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
To elucidate the influence of the cultivation area and climatic conditions on volatiles of virgin olive oil from Gemlik cultivar, an investigation was carried out. Five Turkish geographical zones (Bal?kesir, Ayd?n, Manisa, Antalya and Hatay) were chosen. From these areas, fruits were collected at the same maturity stage and processed using a small experimental olive oil mill, applying identical processing conditions for all olive samples. Headspace solid‐phase microextraction (HS‐SPME) technique coupled to GC/MS was used for volatile analysis. Twenty‐seven compounds were identified and characterised, representing 96.40–98.74% of the total GC area. The major volatile representing about 50% was the (E)‐2‐hexenal. This compound was found in higher concentrations on olive oils from Antalya than from Hatay area. Hexanal was the second most abundant volatile compound and varied between 13.89 and 28.96%. Comparing the olive growing areas Hatay and Antalya, the hexanal concentration was about 29 and 14%, respectively. Generally, a significant difference in the composition of volatile compounds between the oils from the same olive cultivar and from different geographic regions was recorded. The results suggest that climatic factors, latitude and longitude affect the formation of volatiles.  相似文献   

2.
In this study, the Ayvalik olive variety, an important and widely grown olive variety in Turkey, was chosen. A month prior to blooming and 2 months prior to harvesting in 2011 and 2012, three different concentrations of boron (100, 150 and 250 ppm) were applied to the olive leaves with or without boron deficiencies. After the application, quality criteria, fatty acid composition, total phenol contents and major volatile compounds of olive oil that was obtained from the harvested olives were investigated. Boron application to the olive trees with boron deficiencies has improved both the amount and the olive oil quality. Experimental results show the significance of boron for olive farming. Application of boron in 150 ppm led to a better olive oil quality by improving fatty acid composition [oleic acid (76.03 %), linoleic acid (9.68 %), linolenic acid (0.56 %), monounsaturated fatty acid (77.24 %)], total phenol content (422.94 ppm) and major volatile compounds [E‐2‐hexenal (43.12 ppm), hexanal (3.02 ppm), Z‐3‐hexenol (1.13 ppm)] in both harvest seasons (2011–2012) and in both olive orchards with or without boron deficiencies.  相似文献   

3.
One of the main challenges that virgin olive oil producers face today is an accurate prediction of the sensory quality of the final product prior to the milling of the olives. The possibility that olive paste aroma can be used as a predictive measurement of virgin olive oil quality is studied in this paper. The study was centered on distinguishing the aroma of olive pastes that produced virgin olive oils without sensory defects from the aroma of olive pastes the virgin olive oils of which showed sensory defects. Olive pastes were analyzed by solid‐phase microextraction‐gas chromatography and a sensor system based on metal oxide sensors. Forty‐four volatile compounds were identified in olive pastes, all of them being also present in virgin olive oil. Six volatile compounds – acetic acid, octane, methyl benzene, (E)‐2‐hexenal, hexyl acetate and 3‐methyl‐1‐butanol – distinguished both kinds of pastes with only five misclassified samples. Five metal oxide sensors were able to classify the olive pastes with only two erroneous classifications.  相似文献   

4.
Phenolic compound distribution of Turkish olive cultivars and their matching olive oils together with the influence of growing region were investigated. One hundred and one samples of olives from 18 cultivars were collected during two crop years from west, south and south‐east regions of Turkey. The olives were processed to oils and both olive and olive oil samples were evaluated for their phenolic compound distribution. The results have shown that main phenolics of Turkish olives were tyrosol, oleuropein, p‐coumaric acid, verbascoside, luteolin 7‐O‐glucoside, rutin, trans cinnamic acid, luteolin, apigenin, cyanidin 3‐O‐glucoside and cyanidin 3‐O‐rutinoside. Oleuropein and trans cinnamic acid were present in higher amounts among all phenolics. Principal component analyses showed that the growing region did not have drastic effect on phenolic profile of olives. The major phenolic compounds of olive oils were tyrosol, syringic acid, p‐coumaric acid, luteolin‐7‐O‐glucoside, trans cinnamic acid, luteolin and apigenin. Luteolin is a predominant phenolic compound in almost all oil samples. Total phenol concentrations of Southeast Anatolian oils were found to be lower than those of the other regions.  相似文献   

5.
A characterization study of Turkish monovarietal olive oils using chemical variables such as fatty acid, sn‐2 fatty acid, triacylglycerol, and sterol composition is presented. A total of 101 samples of Olea europaea L. fruits from 18 cultivars were collected for two crop years from west, south, and southeast regions of Turkey. Olives were processed to oil and olive oil samples were evaluated for their triacylglycerol structures and sterol composition. Oleic acid content ranged from 60.15 to 80.46 % of total fatty acids and represented 70.90–89.02 % of sn‐2 position triacylglycerols. Major triglycerides of oil samples were triolein, palmitodiolein, dioleolinolein, palmitooleolinolein, dipalmitoolein, and stearodiolein. Triolein values were between 24.72 and 48.64 % and compatible with the fatty acid composition. Total sterol content varied from 1,145.32 to 2,211.77 mg/kg and Edremit yagl?k stood out because of its high sterol content. A one‐way analysis of variance revealed significant differences for variables among cultivars. Principle component analysis enabled the classification of common varieties on the basis of analytical data. Sterol composition achieved more relevant discrimination than fatty acid and triglyceride composition. Classification according to geographical origin was performed by discriminant analysis.  相似文献   

6.
The influence of a new crusher i.e. blade crusher on the quality of virgin olive oil from two different italian cultivars (Coratina and Oliarola) was determined. In addition the quality of this oil was compared with that of olive oil extracted with the traditional hammer crusher. Tests were performed in an industrial oil mill using the two different crushing instruments. Results obtained showed that quality parameters i.e. free fatty acids, peroxide value, UV absorption and total phenols content as well as the phenolic composition of oils were not significantly affected by the two different crushers used. On the contrary, the use of the blade crusher influenced the composition of the volatile compounds. In particular, the oils obtained using the blade crusher showed significant increases of some aldehydes such as 1‐hexanal and trans‐2‐hexenal, esters such as hexyl acetate and 3‐hexenyl acetate and a reduction of alcohols such as 1‐hexanol. Moreover, the identified pigments of the oils produced using the blade crusher were found at concentrations slightly lower than those in oils obtained after using the hammer crusher. Finally, results of the sensory analysis showed an improved organoleptic quality for the oils obtained using the blade crusher due to an increase of the cut‐grass and floral sensory notes.  相似文献   

7.
The present study comprises the second part of an ongoing study focusing on olive oil from five less well‐known Greek cultivars for three of which there are no data available in the literature regarding their chemical composition. A total of 74 olive oil samples were collected during the harvesting periods 2012–2013 and 2013–2014. Headspace‐solid phase microextraction was applied to determine the olive oil volatile profile. Fifty‐six compounds were identified and semi‐quantified by CG–MS. Furthermore, fatty acid composition, conventional quality parameters and color parameters were determined in an effort to characterize and differentiate olive oils according to cultivar. All samples were characterized as extra virgin olive oils. Data obtained showed significant differences between the cultivars. Multi‐element analysis in combination with chemometrics resulted in a high classification rate of 86.5 % for the combination of volatiles plus color, 89.2 % for the combination of VC plus FA, and 91.9 % for the combination of FA composition plus color plus CQP.  相似文献   

8.
The behaviour of three European olive varieties, Ascolana Tenera, Koroneiki and Picholine, cultivated in the north of Tunisia, was compared to an autochthonous variety, Chétoui. Most of the quality indices and the fatty acid composition showed significant variations between the olive oils. Among the introduced varieties, the Picholine cultivar had the highest value of oleic acid (61%) whereas the Ascolana Tenera cultivar was noteworthy for its lowest content of phenolic compounds (175 mg/kg) and presented the highest level of palmitic acid. The Chétoui variety presented a high content of oleic and linoleic acids. But all samples, both the autochthonous Chétoui and the introduced cultivars, have similar levels of antioxidant compounds, with the exception of phenols. The aroma composition showed significant differences between the oils from the foreign cultivars. The major volatile component was the C‐6 aldehyde fraction whose content varied greatly between the different varieties studied: The E‐2‐hexenal content ranged from 1.6 mg/kg of oil in the Ascolana Tenera variety to >5 mg/kg for the Picholine and Koroneiki cultivars, whereas the Chétoui variety had the lowest levels of volatile compounds, with the exception of the hexanal level which was tenfold higher than in the foreign cultivars. Therefore, our results showed that two of the introduced varieties, Koroneiki and Picholine, showed good adaptation to the Tunisian cultivation conditions. So far, we claim the possibility to develop the successful cultivation of these latter imported varieties in the country.  相似文献   

9.
Some important olive cultivars (Kilis yağlık, Halhalı, Karamani, Haşebi, Nizip yağlık) in East Mediterranean Area were studied. Olive fruits were processed on a low-scale mill equipped with a basket centrifuge. Basic quality parameters, the content of total polyphenols, o-diphenols, oxidation stability (Rancimat) and antiradical activity [1,1-diphenyl-2-picrylhydrazyl (DPPH)] were determined in oil samples. The highest induction period (IP) was 36.42 h, found in the Halhalı cultivar (from Gaziantep province), which also had strong radical scavenging activity (RSA) (96.72% in methanol:water extract and 94.91% in total oil) in all samples. The total phenol and o-diphenol content for this cultivar were 495.42 and 76.89 mg caffeic acid/kg oil, respectively. The oxidation stability and antiradical activity of the Kilis yağlık cultivar (from Kilis province) was very poor when compared to other cultivar (IP; 10.40 h, RSA in methanol: water extract; 30.94%, RSA in total oil; 52.31%). In addition total phenol and o-diphenol content for this cultivar were 38.31 and 5.03 mg caffeic acid/kg oil, respectively.  相似文献   

10.
The unique sensory characteristics of extra virgin olive oil (EVOO) depend upon its volatile composition. This work investigates the impact of olive fruit harvesting time and growing location on the volatile composition of the obtained EVOO, on four typical Spanish olive varieties (Cornicabra, Picual, Castellana, Manzanilla Cacereña). Several growing locations within the Madrid region (Spain) are studied to assess the natural variability attributed to the environmental factors. Aroma compounds are analyzed by solid-phase microextraction coupled with gas-chromatography and mass spectrometry, and sensory analysis. A considerable different behavior is observed depending on the olive variety and ripening stage. Statistically significant differences are obtained for volatile compounds biosynthesized from the lipoxygenase pathway and other fatty acid metabolism routes, which results in significant differences in their aroma profiles. Practical applications: These results have practical applicability for the olive oil industry and regulatory bodies. For example, for protected designation of origin EVOOs the aroma profile needs to be consistent over different production lots. The outcome of this research is of interest to the olive oil industry to get a better insight into the expected variability and interactions among cultivars, small pedoclimatic differences within the same broader area, and the harvesting date on the sensory and volatile profile of the resulting EVOO.  相似文献   

11.
Extra virgin olive oils were extracted from six different major olive cultivars (Gemlik, Ayvalik, Domat, Akhisar, Memecik, Arbequina) cultivated in the Aegean region of Turkey. Fatty acid, sterol and tocopherol compositions were analyzed and the results were compared by multivariate statistical analysis. Olive samples were collected from the same orchard in order to limit the contribution of parameters such as climate, soil quality and agricultural practices to the total variance of chemical composition of olive oils. Principal component analysis (PCA) showed that cultivars can be clearly distinguished on the basis of fatty acid and sterol composition. It is of interest to note that palmitoleic acid content of Arbequina, a Spanish cultivar, is significantly (p < 0.05) higher than the local Turkish cultivars in question and it is the only olive sample whose palmitoleic acid concentration is higher than that of the stearic acid concentration, exhibiting a divergent composition from the local Turkish cultivars. β‐Sitosterol and Δ5‐avenasterol contents of the oils are significantly correlated (r = ?0.989, p < 0.05) and this results in a discriminative axis on the PCA loading plot. Tocopherol composition was relatively insufficient in discriminating the olive varieties. Regarding tocopherol compositions Gemlik cultivar is distinguished from other cultivars with its γ‐tocopherol content, which is in average two times higher than that of other cultivars. The result of the present compositional study provides important data which can be used for olive oil authenticity studies in Turkey.  相似文献   

12.
Volatile and phenolic compositions of olive oil obtained from the cv. Halhali were investigated in the present study. Fruits were harvested at the optimum maturity stage of ripeness and immediately processed with cold press. Simultaneous distillation/extraction (SDE) with dichloromethane was applied to the analysis of volatile compounds of olive oil. Sensory analysis showed that the aromatic extract obtained by SDE was representative of olive oil odour. In the olive oil, 40 and 44 volatile components were identified and quantified in 2010 and 2012 year, respectively. The total amount of volatile compounds was 18,007 and 19,178 μg kg?1 for 2010 and 2012, respectively. Of these, 11 compounds in the 2010 and 12 in the 2012 harvest presented odour activity values (OAVs) greater than 1, with 1‐octen‐3‐ol, ethyl‐3‐methyl butanoate, (E)‐2‐heptenal and (E,Z)‐2,4‐decadienal being those with the highest OAVs in olive oil. The high‐performance liquid chromatographic method coupled with diode‐array detection was used to identify and quantify phenolic compounds of the olive oil. A total of 14 phenolic compounds in both years were identified and quantified in olive oil. The major phenolic compounds that were identified in both years were hydroxytyrosol, tyrosol, elenolic acid, luteolin, and apigenin. Antioxidant activity of olive oil was measured using the DPPH and ABTS methods.  相似文献   

13.
Aroma, aroma‐active compounds and fatty acid profiles of Iranian olive oil obtained from the cv. Mari were investigated for the first time in the current study. Aroma extracts were isolated from the oil by using a purge and trap extraction system and their compositions were analyzed by gas chromatography‐mass spectrometry‐olfactometry (GC–MS‐O). A total of 35 aroma compounds comprising alcohols, aldehydes, acids, esters, ketones, terpenes and volatile phenols were identified and quantified in the assayed samples. Aldehydes were present at the highest levels, followed by ketones and alcohols. (E)‐2‐Hexenal was quantitatively (1589 µg kg?1) the main aroma compound in the analyzed oils, followed by hexanal and (E)‐2‐heptenal. The aroma‐active volatiles were elucidated in the aromatic extract by applying aroma extract dilution analysis (AEDA). The results of AEDA revealed 17 aroma‐active compounds. Under these condition it was possible to completely identify 16 of these compounds. Regarding to the flavor dilution (FD) factor, the most potent odorants with the highest FD factor were (E)‐2‐hexenal (512), followed by hexanal, 6‐methyl‐5‐hepten‐2‐one, (E)‐2‐decenal and one unknown compound (LRI = 1871). The fatty acid profile of the tested oils was composed of thirteen compounds. Oleic acid was the main fatty acid (76.01 %) followed by palmitic acid.  相似文献   

14.
In this study, a total of 22 domestic monocultivar (Ayval?k and Memecik cv.) virgin olive oil samples taken from various locations of the Aegean region, the main olive growing zone of Turkey, during two (2001–2002) crop years were classified and characterized by well‐known chemometric methods (principal component analysis [PCA] and hierarchical cluster analysis [HCA]) on the basis of their triacylglycerol (TAG) components. The analyses of TAG components (LLL and major fractions LOO, OOO, POO, PLO, SOO, and ECN 42–ECN 50) in the oil samples were carried out according to the HPLC method described in a European Union Commission (EUC) regulation. In all analyzed samples the value of trilinolein (LLL), the least abundant TAG, did not exceed the maximum limit of 0.5 % given by the EUC regulation for different olive oil grades. The ranges of abundant TAG, namely LOO, OOO, POO, PLO, and SOO, were 13.30–16.08, 37.27–46.36, 21.39–23.24, 4.93–7.03, and 4.72–6.00 %. The TAG data of Aegean virgin olive oils were similar to those of products from important olive‐oil‐producing Mediterranean countries was determined. Also, the estimation of major fatty acids (FA) was carried out by using a formula based on TAG data. The PCA results showed that some TAG components have an important role in the characterization and geographical classification of 22 monocultivar virgin olive oil. The Aegean virgin olive oil samples were successfully classified and discriminated into two main groups as the North and South (growing) subzones or Ayval?k and Memecik olives (cultivars) according to the HCA results based on experimental TAG data and calculated major FA profile.  相似文献   

15.
The main objective of this work was to study the effects of foliar biofertilizers on individual volatile profiles and phenolic compounds of olive oil (Olea europaea L. cv. Chemlali). Three foliar biofertilizers were used in two successive application seasons: T1 (rich in nitrogen, phosphorus and potassium); T2 (rich in calcium); and T3 (application of both T1 and T2). Results showed that foliar fertilization with T2 increased the phenolic compound contents (e.g., oleuropein aglycone and decarboxymethyl ligstroside aglycone) of Chemlali olive oil. It also enhanced the levels of many volatile compounds responsible for the good flavor of olive oil such as hexanal. However, T1-tested fertilizer led to a significant decrease in the content of phenolic compounds, although they seemed to improve significantly the levels of the majority of volatile compounds, especially hexanal. Based on these results, a significant relationship between plant nutrition and quality of oil was observed. Our results demonstrated a potential positive influence on the concentration of sensory quality compounds under T2 (Ca2+-based fertilizer). This result should be considered in the design of foliar nutrient application management strategies for olive trees.  相似文献   

16.
Olives were collected from various districts of Turkey (North and South Aegean sub-region, Bursa-Akhisar, South East Anatolia region) harvested over seven (2001–2007) seasons. The aim of this study was to characterize the chemical profiles of the oils derived from single variety Turkish olives including Ayvalik, Memecik, Gemlik, Erkence, Nizip Yaglik and Uslu. The olive oils were extracted by super press and three phase centrifugation from early harvest olives. Chosen quality indices included free fatty acid content (FFA), peroxide value (PV) and spectrophotometric characteristics in the ultraviolet (UV) region. According to the FFA results, 46% (11 out of 24 samples) were classified as extra virgin olive oils; whereas using the results of PV and UV, over 83% (over 19 of the 24 samples) had the extra virgin olive oil classification. Other measured parameters included oil stability (oxidative stability, chlorophyll pigment, pheophytin-α), cistrans fatty acid composition and color index. Oxidative stability among oils differed whereas the cis–trans fatty acid values were within the national and international averages. Through the application of two multivariate statistical methods, Principal component and hierarchical analyses, early harvest virgin olive oil samples were classified according to the geographical locations categorized in terms of fatty acid profiles. Such statistical clustering gave rise to defined groups. These data provide evidence of the variation in virgin olive oil quality, especially early harvest and cistrans isomers of fatty acid profiles from the diverse agronomic conditions in the olive growing regions of Turkey.  相似文献   

17.
The characterization of both volatiles and fatty acids of Tunisian olive varieties (Ouslati and Chemlali) is achieved in order to understand their correlation with the aroma accumulation via the lipoxygenase (LOX) pathway. The main identified volatiles in both crushed pulps and crushed stones are hexanal, E‐(2)‐hexenal, (Z)‐3‐hexen‐1‐ol, 1‐hexanol, and hexyl acetate. With regard to their fatty acid composition, results show that both de‐stoned (DOO) and conventional (COO) olive oils contain mainly unsaturated fatty acids. The results also show that oleic acid (C18:1) is the main fatty acid in both DOO and COO. Meanwhile, linoleic acid (C18:2) is present in a relatively higher percentage (5.2% and 19.8%, respectively, for Ouslati and Chemlali DOI) than linolenic fatty acid (C18:3) (<2%). The analysis of volatiles shows that more than 80% of total LOX‐compounds from both crushed pulps and crushed stones have linolenic acid as synthesis precursor despite its lower level (2%). Moreover, the contribution of olive parts in generating aroma is much higher in crushed pulps (more than 80%) than in crushed stones, which explains the fact that DOO, extracted from crushed pulps, contains the dominant amount of volatiles. Therefore, the obtained results promote both the consumption and the marketing of DOO. Practical Applications: The aroma and the organoleptic properties of olive oil are strictly correlated with both the olives quality and the extraction techniques used. Many technologies are developed to extract olive oil with highest quality. De‐stoned olive oil extraction process is one of these technical procedures. In the present work, the characterization of volatiles in pulp and stone separately provides important information about the contribution of olive constitutive parts on the accumulation of olive oil aroma during the oil extraction process.  相似文献   

18.
The volatile profiles of virgin olive oils originating from the USA were first studied: 71 volatile compounds were identified in 21 monovarietal virgin olive oils using solid‐phase microextraction–gas chromatography/mass spectrometry, representing 100 % of the headspace composition. Principal component analysis (PCA) allowed for the grouping of olive oils based on geographical origin, and also the distinguishing of olive oil varieties by their relative positions in the group; 17 distinguishable volatile compounds that significantly contributed to the olive oil classification were found to be distributed on a PCA plot according to their sensory attributes. Moreover, the major volatile components were compared among varieties and origins to clarify the genetic and geographic influences. Our results indicate the significant effects of both origin and cultivar on the volatile composition of olive oil as well as the dominant role of the geographic effect compared to the genetic effect on applied samples.  相似文献   

19.
Fruits from three Tunisian cultivars of Olea europea L. grown in the southeast of Tunisia were harvested at the maturity stage of ripeness and immediately processed with a laboratory mill. There are as yet no data on the chemical composition of virgin olive oils from the southeast of Tunisia, an area characterized by an arid condition of growth for olive trees. Our results showed significant differences in the analytical parameters examined for the three cultivars such as fatty acid composition, total phenols and o‐diphenols, and the content of chlorophylls and carotenoids, confirming the importance of genetic factors in the chemical characteristics of the oil. Headspace solid‐phase microextraction (HS‐SPME) was applied to the analysis of volatile compounds of virgin olive oils. Forty‐eight compounds were isolated and characterized by GC‐RI and GC‐MS, representing 94.1–98.1% of the total amount. (E)‐Hex‐2‐enal, the main compound extracted by SPME, characterized the olive oil headspace for all samples. So, it was clearly shown that there were qualitative and quantitative differences in the proportion of volatile constituents from oils of the various cultivars.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号