首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this paper, the square waveguide with quadruple corner‐cut ridges is analyzed using the hybrid mode‐matching boundary‐element method. Because of its symmetry, only a quarter of its cross‐section needs to be considered and it is then divided into three regions. The electromagnetic field components in two regular regions can be obtained using the mode‐matching method and the third irregular region is discretized using the boundary‐element method. The combination of two methods produces one matrix equation, from whose determinant the cutoff wavenumbers of waveguide modes can then be computed. This hybrid technique takes advantage of the mode‐matching method's high efficiency and the boundary‐element method's versatility. The convergence of this hybrid method is studied, and numerical results are compared with the conventional boundary‐element method and commercial finite‐element software package, which shows that our hybrid method can achieve the same accuracy with much less time. The influence of the cut‐corners on the cutoff wavenumbers of the dominant and higher‐order modes is then examined. A simple approximate equation is found to accurately predict the cutoff wavenumber of TE20 mode. The single‐mode bandwidth of a quadruple ridged square waveguide is calculated thereafter, which shows that this corner‐cut structure can provide a broader bandwidth compared to the one without cut‐corners. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The purpose of this study is to examine the influence of the shape of the cross‐section of a scramjet engine‐driven experimental diagonal conducting wall (DCW)‐MHD generator on generator performance by three‐dimensional numerical analyses. We have designed MHD generators with symmetric square and circular cross‐sections, based on an experimental MHD generator with an asymmetric square cross‐section. Under the optimum load conditions, the electric power output reaches 26.6 kW for the asymmetric square cross‐section, 24.6 kW for the symmetric square cross‐section, and 22.4 kW for the circular cross‐section. The highest output is obtained for the experimental generator with the asymmetric square cross‐section. The difference in the electric power output is induced by the difference of flow velocity and boundary layer thickness. For the generator with the asymmetric square cross‐section, the average flow velocity is highest and the boundary layer is thinnest. The compression wave is generated with dependence on the channel shape. The difference in the flow velocity and boundary layer thickness is induced by the superposition of the compression wave. © 2014 Wiley Periodicals, Inc. Electr Eng Jpn, 187(2): 9–16, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22403  相似文献   

3.
In this paper, a three‐dimensional (3D) model of threshold voltage is presented for dual‐metal quadruple‐gate metal‐oxide‐semiconductor field effect transistors. The 3D channel potential is obtained by solving 3D Laplace's equation using an isomorphic polynomial function. Threshold voltage is defined as the gate voltage, at which the integrated charge (Qinv) at the ‘virtual‐cathode’ reaches to a critical charge Qth. The potential distribution and the threshold voltage are studied with varying the device parameters like gate metal work functions, channel cross‐section, oxide thickness, and gate length ratio. Further, the drain‐induced barrier lowering has also been analyzed for different gate length ratios. The model results are compared with the numerical simulation results obtained from 3D ATLAS device simulation results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The indirect modelling of electromagnetic scattering from two‐dimensional composite uniaxial bianisotropic cylinders of arbitrary cross‐section is successfully performed according to the principle of equivolumetric model. The mathematical treatment here is based on the generalized boundary‐value method combined with the technique of separate variables. The solution is obtained from a system of linear equations of infinite order which is then truncated during numerical computations. Then, numerical investigation is carried out to demonstrate hybrid effects of geometrical and constitutive parameters of guest and host cylinders on the co‐ and cross‐polarized echo widths in the far‐field zone. It is shown that under certain circumstances, the indirect modelling technique is very efficient to study the scattering characteristics of many practical complex planar structures, and has some advantages over the direct numerical method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents two methods for signal separation. In either method, the fundamental criterion for separation relies on reducing to zero, or at least minimizing, the output cross‐correlation or cross‐cumulant functions of a decoupling multi‐input–multi‐output system that is fed with mixed signals. In one of the approaches used, the parameters of this system are determined through solving — in a least‐squares sense — a linearized set of equations describing the deviations from zero of either the cross‐correlation or cross‐cumulant functions when evaluated for different lags. An alternative rapidly convergent adaptive algorithm is also described for minimizing the cross‐correlation or cross‐cumulant functions. The paper also considers both FIR and IIR representations of the decoupling system. It shows that using IIR functions in the decoupling system does not offer any merit over the FIR case. Illustrative examples are given to show the performance of the proposed algorithms. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
The hybrid mode‐matching/two‐dimensional‐finite‐element (MM/FEM2D) technique has been proposed for the analysis of discontinuities with waveguides of arbitrary cross section; this technique combines the computational efficiency of modal analysis with the versatility and flexibility of the FEM approach. In this paper, we present in detail a surface‐integrals and a line‐integrals formulation of the hybrid MM/FEM2D technique, in case the ‘Standard Formulation’ is used as FEM2D formulation. Such formulations allow computing analytically both the normalization and the coupling integrals. Furthermore, we compare the accuracy obtained by using the line‐integrals and the corresponding surface‐integrals formulation. To these aims we present several numerical results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The NbTi superconducting strands and cables for the field winding of the 200‐MW‐class high‐energy‐density‐type superconducting generator are developed. They are composed of Cu/Cu‐10wt%Ni/Nb‐46.5wt%Ti superconducting strands and the 10‐kA (at 5 T)‐class 9‐strand compacted cables. The diameter of strands is 1.33 mm, and the 9‐strand compacted cables are 2.4 mm thick and 6.0 mm wide. In order to produce high‐current‐density NbTi strands, we made strands under controlled aging heat treatments, the total and final strains, and the strains between heat treatments, by using large‐scale extruder. Moreover, in order to produce high‐stability and low‐AC‐loss NbTi strands and cables, the matrix ratio of strands and the cross sections of strands are optimized. The current density of NbTi filaments for the four‐time‐aging manufactured 1.33‐mm‐diameter strands was JC=3150 A/mm2 at 5 T, 1150 A/mm2 at 8 T. The critical current of the 9‐strand compacted cable is 10.7 kA at 5 T. The AC losses of the final compacted cables are less than 100 kW/m3 at 5 T, 5 T/s, that is, decreased to less than half of the target of the AC loss value (< at 5 T, 5 T/s). Compared with the strand (Cu ratio 1.77), the minimum quench energy (MQE) of the strand (Cu ratio>2) increased about 40% at the operation mode current of the superconducting generator. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 156(3): 24– 31, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20266  相似文献   

8.
An interface‐enriched generalized finite element method is presented for analyzing electromagnetic problems involving highly inhomogeneous materials. To avoid creating conformal meshes within a complex computational domain and preparing multiple meshes during optimization, enriched vector basis functions are introduced over the finite elements that intersect the material interfaces to capture the normal derivative discontinuity of the tangential field component. These enrichment functions are directly constructed from a linear combination of the vector basis functions of the sub‐elements. Several numerical examples are presented to verify the method with analytical solutions and demonstrate its h‐refinement convergence rate. The proposed interface‐enriched generalized finite element method is shown to achieve the same level of accuracy as the standard finite element method based on conformal meshes. Two examples, involving multiple microvascular channels and circular inclusions of different radii, are analyzed to illustrate the capability of the proposed approach in handling complicated inhomogeneous geometries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In correlation‐based signal separation algorithms, the received mixed signals are fed to a de‐coupling system designed to minimize the output cross‐correlation functions. If minimizaion is perfect, each of the system's outputs carries only one signal independent of the others. In these algorithms, the computation burden of the output cross‐correlation functions normally slows down the separation algorithm. This paper, describes a computationally efficient method for off‐line pre‐computation of the needed cross‐correlation functions. Explicit formulas have been derived for the output cross‐correlation functions in terms of the received input signals and the de‐coupling system parameters. Then, it is shown that signal separation amounts to the least‐squares solution of a system of linear equations describing these output cross‐correlation functions, evaluated over a batch of lags. Next, a fast RLS‐type adaptive algorithm is devised for on‐line signal separation. In this respect, an algorithm is derived for updating the de‐coupling parameters as data comes in. This update is achieved recursively, along the negative of the steepest descent directions of an objective cost function describing the output cross‐correlation functions over a batch of lags, subject to equal output power constraints. Illustrative examples are given to demonstrate the effectiveness of the proposed algorithms. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Dry‐cured and extruded three‐layer (E‐E type) 6.6‐kV cross‐linked polyethylene (XLPE) cables were introduced into electric power systems more than 30 years ago, but they do not experience failures because of water tree degradation. Also, the degradation index of water treeing for these cables has not been established. Therefore, investigating results of residual breakdown voltage and water tree degradation of these cables will help us plan for cable replacement and determine water tree degradation diagnosis scheduling, and will be fundamental data for cable lifetime evaluation. In this study, the authors measured the ac breakdown voltages of dry‐cured and E‐E type 6.6‐kV XLPE cables removed after 18 to 25 years of operation and observed the water trees in their XLPE insulation. As a result, it was observed that breakdown voltages were larger than the maximum operating voltage (6.9 kV) and the ac voltage for the dielectric withstanding test (10.3 kV). Water trees were mainly bow‐tie water trees and their maximum length was approximately 1 mm. Although the number of measured cables was limited, the lifetime of this type of cable was estimated to be approximately 40 years, even experiencing water immersion.  相似文献   

11.
For broadband frequency domain responses of highly dynamical systems, because vector fitting always has low accuracy especially at resonant frequency response points, a new piecewise vector fitting algorithm is proposed. The complete broadband frequency range is divided into a number of sections. Vector fitting is then applied to each section to identify the poles and residues. Through frequency partitioning, the numerical conditioning of the pole and residue identification equations is improved. Then in each section a sub‐macromodel is obtained. Finally, by adding up the sub‐macromodels in each section, a novel broadband macro‐model with high accuracy is obtained for the whole broadband frequency domain. At the same time, to reduce redundant poles, in each section the number of poles is controlled by a predefined fitting error. An illustrative example involving a low‐pass filter is presented for validation of the proposed method. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

12.
Hong Lei, Lian‐Ze Wang and Zi‐Niu Wu presented new simple and convenient solutions of the magnetic field for an arbitrary geometry coil with rectangular cross section. They treated two types of basic forms: the trapezoidal prism segment and curved prism segment. The curved prism segment has been divided into a series of small trapezoidal prism segments with the same cross section and its magnetic field is a vector sum of the individual fields created by each small trapezoidal prism conductor. For one trapezoidal prism conductor the magnetic field is obtained by 1‐D integrals using Romberg numerical integration. In this paper, we give a completely analytical solution of these 1‐D integrals that considerably saves the computational time especially in the computation of the magnetic field nearby the conductor surface, at the conductor surface and inside the conductor. From obtained analytical expressions the treatment of singularities can be easily done. Also, we tested four types of numerical integration (Gaussian, Romberg, Simpson and Lobatto) to find the most convenient singularity treatment of 1‐D integrals. These obtained results are compared with those obtained analytically so that one can understand the advantage of the proposed approach. The paper points out on the accuracy and the computational cost. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a numerical model of electromagnetic left‐handed metamaterials is proposed. The dispersive properties of these materials are accounted for in the time domain by using the transmission‐line matrix method based on Z‐transforms. The close agreements obtained between the analytic and numerical results verify the validity, accuracy and stability of the approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents an intensive discussion on a long‐distance high‐voltage direct‐current (HVDC) transmission system that combines two modular multilevel cascade converters based on double‐star chopper cells (MMCC‐DSCC) with DC power cables. Hereinafter, a single MMCC‐DSCC is referred to as a DSCC converter or just as a DSCC for the sake of simplicity. The HVDC transmission system is required to provide low‐voltage‐ride‐through (LVRT) capability to enhance transmission system availability. This paper proposes a new LVRT method without any direct information exchange between the two DSCC converters. The validity of the method is verified, using simulated waveforms from the software package of “PSCAD/EMTDC” and experimental waveforms from a three‐phase 200‐V, 400‐Vdc, 10‐kW, 50‐Hz downscaled HVDC system with a set of 300‐meter‐long DC power cables.  相似文献   

15.
The transient electromagnetic fields during switching operation in gas‐insulated substations (GISs) have rise times on the order of nanoseconds. These fields leak into the external environment through the discontinuities of gas‐insulated modules and affect the control cables and induce the transient voltage on cables, which results in malfunctioning of the equipment. The amplitudes of the electric and magnetic fields could be a few tens of kilovolts per meter and a few hundred amperes per meter according to layout of GIS, respectively. In this work, the induced voltage in the central conductor of a control cable and the induced current in its sheath, which is parallel to bus duct in a GIS with rated voltage of 230 kV, are calculated. Influence of the sheath material on the induced voltage and the type of its grounding on the induced current are analyzed. Furthermore, the impact of installing ferrite rings over the control cable sheath in mitigating the induced voltage and current is investigated. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

16.
In this paper, the hierarchical high‐order basis functions on tetrahedrons are introduced to the Crank–Nicolson (CN) finite‐element time‐domain (FETD) with the 3D Maxwell equations for analysis of the microwave circuit structures. Whitney 1‐form high‐order hierarchical basis functions are used to expand the electric field and Whitney 2‐form high‐order hierarchical basis functions for the magnetic field. The CN scheme is employed in the FETD method to lead to an unconditionally stable algorithm. Numerical results were presented to demonstrate the accuracy and efficiency of the proposed high‐order CN‐FETD method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Water trees are the most hazardous factor affecting the life of XLPE distribution cables and the major cause of insulation failure. It is well known that insulation failure causes stoppages in electrical service and requires extensive repair work. Up to now, deterioration of cable insulation has been diagnosed mainly by the dc leakage current method. However, application of this method for diagnostic measurements requires interruption of electrical service. Several types of hot‐line diagnostic methods (including the dc component current and dc superposition methods) were developed to detect water tree deterioration. However, these methods have some shortcomings, such as being subject to effects of stray currents and the accuracy of measurements not being sufficiently high. Therefore, we have attempted to develop a new hot‐line diagnostic method. We investigated whether the signals produced by superposition of voltages of various frequencies to the cover layer of energized cables were correlated with deterioration by the water treeing. As a result, we found that a deterioration signal of 1 Hz was observed when we superposed an ac voltage (commercial frequency × 2 +1 Hz) on the cover layer of cable where the water tree had occurred in the insulation. © 1999 Scripta Technica, Electr Eng Jpn, 130(2): 49–58, 2000  相似文献   

18.
A time‐domain method for calculating the band structure of one‐dimensional periodic structures is proposed. During the time‐stepping of the method, the column vector containing the spatially sampled field data is updated by multiplying with an iteration matrix. The iteration matrix is first obtained by using the matrix‐exponential decomposition technique. Then, the small nonzero elements of the matrix are pruned to improve its sparse structure, so that the efficiency of the matrix–vector multiplication involved in each time‐step is enhanced. The numerical results show that the method is conditionally stable but is much more stable than the conventional finite‐difference time‐domain (FDTD) method. The time‐step with which the method runs stably can be much larger than the Courant–Friedrichs–Lewy (CFL) limit. And moreover, the method is found to be particularly efficient for the band structure calculation of large‐scale structures containing a defect with a very high wave speed, where the conventional FDTD method may generally lose its efficiency severely. For this kind of structures, not only the stability requirement can be significantly relaxed, but also the matrix‐pruning operation can be very effectively performed. In the numerical experiments for large‐scale quasi‐periodic phononic crystal structures containing a defect layer, significantly higher efficiency than the conventional FDTD method can be achieved by the proposed method without an evident accuracy deterioration if the wave speed of the defect layer is relatively high. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A new computationally implemented semi‐analytic mathematical model is presented to obtain a more accurate estimation of the inversion charge in a MOS structure than standard models. The values of the error of the inversion charge obtained are compared with the assumed ‘exact’ numerical calculated values. These errors are appreciably smaller than the estimation coming from the classical charge‐sheet and depletion approximations. Also the calculation time to obtain the inversion charge is shown to be significantly lower than the numerical one. Because of its accuracy and its relatively low computational speed, the proposed model is a good alternative methodology for the calculation of the inversion charge of MOSFET transistors as a function of their physical features and gate bias voltage. In this sense it should be very useful to be implemented by computer‐aided design integrated circuit simulation software. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This paper proposes an adaptive neuro‐fuzzy approach for fault direction estimation in sectional transmission lines. The ANFIS (adaptive neuro‐fuzzy inference system) network is designed by selecting different input and output member functions and rules for training and testing of fault cases. The fundamental component of current obtained from three‐phase current employing discrete Fourier transform (DFT) is given as input to the ANFIS module. The trained ANFIS module is then tested for detecting the fault direction. The relay is located at middle section‐2, which is considered as the primary section to be protected. It takes section‐1 as reverse section and section‐3 as forward section. This method is not affected by the variation of fault type, fault inception angle, fault location, and fault resistance. The biggest advantage of the ANFIS method is that it can detect the fault direction within 1 ms in almost all cases, which is much less than the implemented distance relaying scheme. The second advantage of the method is that it takes less number of training samples to detect the direction accurately as compared to other training algorithms like ANN, SVM, etc. The third advantage of the proposed scheme is that it offers protection to 99% of line length in all the three sections. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号